费舍尔-斯特凡方程中渐近波的稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
T.T.H. Bui , P. van Heijster , R. Marangell
{"title":"费舍尔-斯特凡方程中渐近波的稳定性","authors":"T.T.H. Bui ,&nbsp;P. van Heijster ,&nbsp;R. Marangell","doi":"10.1016/j.physd.2024.134383","DOIUrl":null,"url":null,"abstract":"<div><div>We establish spectral, linear, and nonlinear stability of the vanishing and slow-moving travelling waves that arise as time asymptotic solutions to the Fisher–Stefan equation. All stability analysis is in terms of the limiting equations that the asymptotic waves satisfy.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of asymptotic waves in the Fisher–Stefan equation\",\"authors\":\"T.T.H. Bui ,&nbsp;P. van Heijster ,&nbsp;R. Marangell\",\"doi\":\"10.1016/j.physd.2024.134383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish spectral, linear, and nonlinear stability of the vanishing and slow-moving travelling waves that arise as time asymptotic solutions to the Fisher–Stefan equation. All stability analysis is in terms of the limiting equations that the asymptotic waves satisfy.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了作为费舍尔-斯特凡方程时间渐近解的消失波和慢速移动行波的频谱、线性和非线性稳定性。所有稳定性分析都是根据渐近波所满足的极限方程进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of asymptotic waves in the Fisher–Stefan equation
We establish spectral, linear, and nonlinear stability of the vanishing and slow-moving travelling waves that arise as time asymptotic solutions to the Fisher–Stefan equation. All stability analysis is in terms of the limiting equations that the asymptotic waves satisfy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信