基于图的任务规划约束凸化和生成预训练轨迹优化新理论

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Thomas Claudet , Davide Martire , Damiana Losa , Francesco Sanfedino , Daniel Alazard
{"title":"基于图的任务规划约束凸化和生成预训练轨迹优化新理论","authors":"Thomas Claudet ,&nbsp;Davide Martire ,&nbsp;Damiana Losa ,&nbsp;Francesco Sanfedino ,&nbsp;Daniel Alazard","doi":"10.1016/j.ifacsc.2024.100286","DOIUrl":null,"url":null,"abstract":"<div><div>Optimizing high-level mission planning constraints is traditionally solved in exponential time and requires to split the problem into several ones, making the connections between them a convoluted task. This paper aims at generalizing recent works on the convexification of Signal Temporal Logic (STL) constraints converting them into linear approximations. Graphs are employed to build general linguistic semantics based on key words (such as <em>Not</em>, <em>And</em>, <em>Or</em>, <em>Eventually</em>, <em>Always</em>), and <em>super-operators</em> (e.g., <em>Until</em>, <em>Imply</em>, <em>If and Only If</em>) based on already defined ones. Numerical validations demonstrate the performance of the proposed approach on two practical use-cases of satellite optimal guidance using a modified Successive Convexification scheme. Finally, a potential hybridization with generative pre-trained language models is showcased.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"30 ","pages":"Article 100286"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel graph-based theory for convexification of mission-planning constraints and generative pre-trained trajectory optimization\",\"authors\":\"Thomas Claudet ,&nbsp;Davide Martire ,&nbsp;Damiana Losa ,&nbsp;Francesco Sanfedino ,&nbsp;Daniel Alazard\",\"doi\":\"10.1016/j.ifacsc.2024.100286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimizing high-level mission planning constraints is traditionally solved in exponential time and requires to split the problem into several ones, making the connections between them a convoluted task. This paper aims at generalizing recent works on the convexification of Signal Temporal Logic (STL) constraints converting them into linear approximations. Graphs are employed to build general linguistic semantics based on key words (such as <em>Not</em>, <em>And</em>, <em>Or</em>, <em>Eventually</em>, <em>Always</em>), and <em>super-operators</em> (e.g., <em>Until</em>, <em>Imply</em>, <em>If and Only If</em>) based on already defined ones. Numerical validations demonstrate the performance of the proposed approach on two practical use-cases of satellite optimal guidance using a modified Successive Convexification scheme. Finally, a potential hybridization with generative pre-trained language models is showcased.</div></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"30 \",\"pages\":\"Article 100286\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

优化高层次任务规划约束条件传统上需要指数级的时间,而且需要将问题分割成若干个,使得它们之间的联系变得错综复杂。本文旨在推广近期关于信号时态逻辑(STL)约束凸化的研究成果,将其转换为线性近似值。本文采用图形来构建基于关键词(如 "不"、"并且"、"或者"、"最终"、"总是")的通用语言语义,以及基于已定义关键词的超级运算符(如 "直到"、"暗示"、"如果 "和 "只有如果")。数值验证证明了所提出的方法在两个实际应用案例中的性能,这两个案例都是使用修改后的连续凸化方案进行卫星优化制导。最后,还展示了与生成式预训练语言模型的潜在混合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel graph-based theory for convexification of mission-planning constraints and generative pre-trained trajectory optimization
Optimizing high-level mission planning constraints is traditionally solved in exponential time and requires to split the problem into several ones, making the connections between them a convoluted task. This paper aims at generalizing recent works on the convexification of Signal Temporal Logic (STL) constraints converting them into linear approximations. Graphs are employed to build general linguistic semantics based on key words (such as Not, And, Or, Eventually, Always), and super-operators (e.g., Until, Imply, If and Only If) based on already defined ones. Numerical validations demonstrate the performance of the proposed approach on two practical use-cases of satellite optimal guidance using a modified Successive Convexification scheme. Finally, a potential hybridization with generative pre-trained language models is showcased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信