{"title":"带有星形胶质细胞反馈和通用三态受体的端到端突触分子通信","authors":"Tooba Khan , Muhammad Hanif , Omer Waqar","doi":"10.1016/j.nancom.2024.100546","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the mutual information of synaptic molecular communications using a realistic end-to-end synaptic model. In particular, we have considered the influence of astrocytes on neural signaling within the synaptic molecular communication. We have evaluated the average mutual information of the resultant tripartite synapse while considering realistic synaptic geometry that accounts for neurotransmitter reflections from the pre-synaptic and post-synaptic boundaries. The clearance of neurotransmitters from the synapse through diffusion and re-absorption by pre-synaptic terminal is also considered in the simulated model. Moreover, we have used a generic three-state model for postsynaptic receptors to include desensitization state of the receptors. The presented simulation results depict the effects of different pre-synaptic and post-synaptic parameters on the information transfer for a tripartite synaptic channel with three-state receptor model, which is more realistic than the commonly-used bipartite synaptic channel with the two-state receptor model.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors\",\"authors\":\"Tooba Khan , Muhammad Hanif , Omer Waqar\",\"doi\":\"10.1016/j.nancom.2024.100546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the mutual information of synaptic molecular communications using a realistic end-to-end synaptic model. In particular, we have considered the influence of astrocytes on neural signaling within the synaptic molecular communication. We have evaluated the average mutual information of the resultant tripartite synapse while considering realistic synaptic geometry that accounts for neurotransmitter reflections from the pre-synaptic and post-synaptic boundaries. The clearance of neurotransmitters from the synapse through diffusion and re-absorption by pre-synaptic terminal is also considered in the simulated model. Moreover, we have used a generic three-state model for postsynaptic receptors to include desensitization state of the receptors. The presented simulation results depict the effects of different pre-synaptic and post-synaptic parameters on the information transfer for a tripartite synaptic channel with three-state receptor model, which is more realistic than the commonly-used bipartite synaptic channel with the two-state receptor model.</div></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878778924000528\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000528","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
End-to-end synaptic molecular communication with astrocytic feedback and generic three-state receptors
This paper investigates the mutual information of synaptic molecular communications using a realistic end-to-end synaptic model. In particular, we have considered the influence of astrocytes on neural signaling within the synaptic molecular communication. We have evaluated the average mutual information of the resultant tripartite synapse while considering realistic synaptic geometry that accounts for neurotransmitter reflections from the pre-synaptic and post-synaptic boundaries. The clearance of neurotransmitters from the synapse through diffusion and re-absorption by pre-synaptic terminal is also considered in the simulated model. Moreover, we have used a generic three-state model for postsynaptic receptors to include desensitization state of the receptors. The presented simulation results depict the effects of different pre-synaptic and post-synaptic parameters on the information transfer for a tripartite synaptic channel with three-state receptor model, which is more realistic than the commonly-used bipartite synaptic channel with the two-state receptor model.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.