Mamta Jotkar , Ilan Ben-Noah , Juan J. Hidalgo , Marco Dentz
{"title":"胶体在部分饱和多孔介质中的扩散作用","authors":"Mamta Jotkar , Ilan Ben-Noah , Juan J. Hidalgo , Marco Dentz","doi":"10.1016/j.advwatres.2024.104828","DOIUrl":null,"url":null,"abstract":"<div><div>It is known that structural heterogeneity induced by the distribution of the water and air phases creates complex flow patterns with a broad distribution of flow velocities, which in turn control key aspects of transport including arrival and residence times, dispersion and spatial distributions of dissolved salts and suspended colloidal particles. Stagnation zones serve as hot spots where colloidal particles can get entrapped, providing a challenging task in controlling their transport. Recent investigations in simple confined geometries suggest diffusiophoresis, the colloid migration driven by local salt gradients, to be an efficient mechanism to control colloidal migration. However, despite its potential, diffusiophoresis in complex porous media remains poorly understood. We use detailed numerical simulations to unravel the effects of diffusiophoresis occurring at pore-scale on the macroscopic dispersion of colloids in partially-saturated porous media with different water-saturation degrees. Diffusiophoresis can promote particle retention or removal, depending on the diffusiophoretic mobility. For fully-saturated media, the pore-scale dynamics due to diffusiophoresis are manifested in the long-time tailing of the breakthrough curves. For partially-saturated media as the degree of water-saturation decreases and flow heterogeneity increases, we observe accumulation and depletion effects in the colloid breakthrough curves which can be traced back to trapping and release in dead-end zones. Finally, our results suggest that colloid mobilisation and retention due to diffusiophoresis can be controlled by the flow rate of the injected salt solution.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104828"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusiophoresis of colloids in partially-saturated porous media\",\"authors\":\"Mamta Jotkar , Ilan Ben-Noah , Juan J. Hidalgo , Marco Dentz\",\"doi\":\"10.1016/j.advwatres.2024.104828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is known that structural heterogeneity induced by the distribution of the water and air phases creates complex flow patterns with a broad distribution of flow velocities, which in turn control key aspects of transport including arrival and residence times, dispersion and spatial distributions of dissolved salts and suspended colloidal particles. Stagnation zones serve as hot spots where colloidal particles can get entrapped, providing a challenging task in controlling their transport. Recent investigations in simple confined geometries suggest diffusiophoresis, the colloid migration driven by local salt gradients, to be an efficient mechanism to control colloidal migration. However, despite its potential, diffusiophoresis in complex porous media remains poorly understood. We use detailed numerical simulations to unravel the effects of diffusiophoresis occurring at pore-scale on the macroscopic dispersion of colloids in partially-saturated porous media with different water-saturation degrees. Diffusiophoresis can promote particle retention or removal, depending on the diffusiophoretic mobility. For fully-saturated media, the pore-scale dynamics due to diffusiophoresis are manifested in the long-time tailing of the breakthrough curves. For partially-saturated media as the degree of water-saturation decreases and flow heterogeneity increases, we observe accumulation and depletion effects in the colloid breakthrough curves which can be traced back to trapping and release in dead-end zones. Finally, our results suggest that colloid mobilisation and retention due to diffusiophoresis can be controlled by the flow rate of the injected salt solution.</div></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"193 \",\"pages\":\"Article 104828\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030917082400215X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030917082400215X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Diffusiophoresis of colloids in partially-saturated porous media
It is known that structural heterogeneity induced by the distribution of the water and air phases creates complex flow patterns with a broad distribution of flow velocities, which in turn control key aspects of transport including arrival and residence times, dispersion and spatial distributions of dissolved salts and suspended colloidal particles. Stagnation zones serve as hot spots where colloidal particles can get entrapped, providing a challenging task in controlling their transport. Recent investigations in simple confined geometries suggest diffusiophoresis, the colloid migration driven by local salt gradients, to be an efficient mechanism to control colloidal migration. However, despite its potential, diffusiophoresis in complex porous media remains poorly understood. We use detailed numerical simulations to unravel the effects of diffusiophoresis occurring at pore-scale on the macroscopic dispersion of colloids in partially-saturated porous media with different water-saturation degrees. Diffusiophoresis can promote particle retention or removal, depending on the diffusiophoretic mobility. For fully-saturated media, the pore-scale dynamics due to diffusiophoresis are manifested in the long-time tailing of the breakthrough curves. For partially-saturated media as the degree of water-saturation decreases and flow heterogeneity increases, we observe accumulation and depletion effects in the colloid breakthrough curves which can be traced back to trapping and release in dead-end zones. Finally, our results suggest that colloid mobilisation and retention due to diffusiophoresis can be controlled by the flow rate of the injected salt solution.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes