传染病管理的最佳控制策略:将微分博弈论与 SEIR 模型相结合

Q1 Mathematics
{"title":"传染病管理的最佳控制策略:将微分博弈论与 SEIR 模型相结合","authors":"","doi":"10.1016/j.padiff.2024.100943","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid spread of infectious diseases poses a critical threat to global public health. Traditional frameworks, such as the Susceptible–Exposed–Infectious–Recovered (SEIR) model, have been crucial in elucidating disease dynamics. Nonetheless, these models frequently overlook the strategic interactions between public health authorities and individuals. This research extends the classic SEIR model by incorporating differential game theory to analyze optimal control strategies. By modeling the conflicting objectives of public health authorities aiming to minimize infection rates and intervention costs, and individuals seeking to reduce their infection risk and inconvenience, we derive a Nash equilibrium that provides a balanced approach to disease management. Using Picard’s iterative method, we solve the extended model to determine dynamic, optimal control strategies, revealing oscillatory behavior in public health interventions and individual preventive measures. This comprehensive approach offers valuable insights into the dynamic interactions essential for effective infectious disease control.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control strategies for infectious disease management: Integrating differential game theory with the SEIR model\",\"authors\":\"\",\"doi\":\"10.1016/j.padiff.2024.100943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid spread of infectious diseases poses a critical threat to global public health. Traditional frameworks, such as the Susceptible–Exposed–Infectious–Recovered (SEIR) model, have been crucial in elucidating disease dynamics. Nonetheless, these models frequently overlook the strategic interactions between public health authorities and individuals. This research extends the classic SEIR model by incorporating differential game theory to analyze optimal control strategies. By modeling the conflicting objectives of public health authorities aiming to minimize infection rates and intervention costs, and individuals seeking to reduce their infection risk and inconvenience, we derive a Nash equilibrium that provides a balanced approach to disease management. Using Picard’s iterative method, we solve the extended model to determine dynamic, optimal control strategies, revealing oscillatory behavior in public health interventions and individual preventive measures. This comprehensive approach offers valuable insights into the dynamic interactions essential for effective infectious disease control.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

传染病的快速传播对全球公共卫生构成了严重威胁。传统的框架,如 "易感-暴露-传染-康复"(SEIR)模型,对于阐明疾病动态至关重要。然而,这些模型往往忽略了公共卫生机构与个人之间的战略互动。本研究结合微分博弈论分析最优控制策略,对经典的 SEIR 模型进行了扩展。公共卫生机构的目标是最大限度地降低感染率和干预成本,而个人的目标是减少感染风险和不便,通过模拟这两种目标之间的冲突,我们得出了一种纳什均衡,为疾病管理提供了一种平衡的方法。利用皮卡尔迭代法,我们求解了扩展模型,以确定动态的最优控制策略,揭示了公共卫生干预和个人预防措施中的振荡行为。这种综合方法为有效控制传染病所必需的动态互动提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control strategies for infectious disease management: Integrating differential game theory with the SEIR model
The rapid spread of infectious diseases poses a critical threat to global public health. Traditional frameworks, such as the Susceptible–Exposed–Infectious–Recovered (SEIR) model, have been crucial in elucidating disease dynamics. Nonetheless, these models frequently overlook the strategic interactions between public health authorities and individuals. This research extends the classic SEIR model by incorporating differential game theory to analyze optimal control strategies. By modeling the conflicting objectives of public health authorities aiming to minimize infection rates and intervention costs, and individuals seeking to reduce their infection risk and inconvenience, we derive a Nash equilibrium that provides a balanced approach to disease management. Using Picard’s iterative method, we solve the extended model to determine dynamic, optimal control strategies, revealing oscillatory behavior in public health interventions and individual preventive measures. This comprehensive approach offers valuable insights into the dynamic interactions essential for effective infectious disease control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信