利用阿坦加纳-巴莱亚努-卡普托分数导数与定点法计算尼帕病毒模型的海尔-乌兰稳定性

Q1 Mathematics
S. Dhivya , V. Govindan , Choonkil Park , Siriluk Donganont
{"title":"利用阿坦加纳-巴莱亚努-卡普托分数导数与定点法计算尼帕病毒模型的海尔-乌兰稳定性","authors":"S. Dhivya ,&nbsp;V. Govindan ,&nbsp;Choonkil Park ,&nbsp;Siriluk Donganont","doi":"10.1016/j.padiff.2024.100939","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we present a novel investigation into the dynamics of the Nipah virus through the lens of fractional differential equations (FDEs), employing the Atangana–Baleanu–Caputo fractional derivative (ABCFD) and the fixed-point approach (FPA). The core contribution of this work lies in establishing the existence and uniqueness of solutions to the proposed FDEs, a critical step for validating the model. Furthermore, we explore the Hyers–Ulam (HU) stability of these generalized FDEs, providing a rigorous mathematical foundation for the stability analysis within the context of viral dynamics. By leveraging the ABCFD, our work extends the classical stability criteria, offering new insights into the role of memory effects in disease modeling. Additionally, we present approximate solutions across various compartments and fractional orders, highlighting the sensitivity of the system to key parameters. Numerical simulations, conducted using the Cullis method, illustrate the impact of fractional orders and validate the theoretical findings, positioning this work as a significant advancement in the application of fractional calculus to epidemiological models.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100939"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyers–Ulam stability of Nipah virus model using Atangana–Baleanu–Caputo fractional derivative with fixed point method\",\"authors\":\"S. Dhivya ,&nbsp;V. Govindan ,&nbsp;Choonkil Park ,&nbsp;Siriluk Donganont\",\"doi\":\"10.1016/j.padiff.2024.100939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we present a novel investigation into the dynamics of the Nipah virus through the lens of fractional differential equations (FDEs), employing the Atangana–Baleanu–Caputo fractional derivative (ABCFD) and the fixed-point approach (FPA). The core contribution of this work lies in establishing the existence and uniqueness of solutions to the proposed FDEs, a critical step for validating the model. Furthermore, we explore the Hyers–Ulam (HU) stability of these generalized FDEs, providing a rigorous mathematical foundation for the stability analysis within the context of viral dynamics. By leveraging the ABCFD, our work extends the classical stability criteria, offering new insights into the role of memory effects in disease modeling. Additionally, we present approximate solutions across various compartments and fractional orders, highlighting the sensitivity of the system to key parameters. Numerical simulations, conducted using the Cullis method, illustrate the impact of fractional orders and validate the theoretical findings, positioning this work as a significant advancement in the application of fractional calculus to epidemiological models.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100939\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们采用阿坦加纳-巴莱亚努-卡普托分数导数 (ABCFD) 和定点法 (FPA),通过分数微分方程 (FDE) 的视角对尼帕病毒的动态进行了新颖的研究。这项工作的核心贡献在于建立了拟议 FDE 的解的存在性和唯一性,这是验证模型的关键步骤。此外,我们还探索了这些广义 FDE 的海尔-乌兰(HU)稳定性,为病毒动力学背景下的稳定性分析提供了严格的数学基础。通过利用 ABCFD,我们的工作扩展了经典稳定性标准,为疾病建模中记忆效应的作用提供了新的见解。此外,我们还提出了各种区间和分数阶的近似解,突出了系统对关键参数的敏感性。使用 Cullis 方法进行的数值模拟说明了分数阶数的影响,并验证了理论发现,使这项工作成为将分数微积分应用于流行病学模型的重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyers–Ulam stability of Nipah virus model using Atangana–Baleanu–Caputo fractional derivative with fixed point method
In this study, we present a novel investigation into the dynamics of the Nipah virus through the lens of fractional differential equations (FDEs), employing the Atangana–Baleanu–Caputo fractional derivative (ABCFD) and the fixed-point approach (FPA). The core contribution of this work lies in establishing the existence and uniqueness of solutions to the proposed FDEs, a critical step for validating the model. Furthermore, we explore the Hyers–Ulam (HU) stability of these generalized FDEs, providing a rigorous mathematical foundation for the stability analysis within the context of viral dynamics. By leveraging the ABCFD, our work extends the classical stability criteria, offering new insights into the role of memory effects in disease modeling. Additionally, we present approximate solutions across various compartments and fractional orders, highlighting the sensitivity of the system to key parameters. Numerical simulations, conducted using the Cullis method, illustrate the impact of fractional orders and validate the theoretical findings, positioning this work as a significant advancement in the application of fractional calculus to epidemiological models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信