M.D. Moull , J.B.L. Martin , T.G.M. Newman , A.L. Jeffery , J.G. Bartholomew , J.-P.R. Wells , M.F. Reid
{"title":"掺杂 Er3+ 的 CaF2 晶体中 C3v(O2-)中心的光谱、晶体场和过渡强度分析","authors":"M.D. Moull , J.B.L. Martin , T.G.M. Newman , A.L. Jeffery , J.G. Bartholomew , J.-P.R. Wells , M.F. Reid","doi":"10.1016/j.omx.2024.100365","DOIUrl":null,"url":null,"abstract":"<div><div>Erbium ions in crystals show considerable promise for the technologies that will form the backbone of future networked quantum information technology. Despite advances in leveraging erbium’s fibre-compatible infrared transition for classical and quantum applications, the transitions are, in general, not well understood. We present detailed absorption and laser site-selective spectroscopy of the C<span><math><msub><mrow></mrow><mrow><mi>3v</mi></mrow></msub></math></span>(O<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msup></math></span>) centre in CaF<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>:Er<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> as an interesting erbium site case study. The <sup>4</sup>I<span><math><msub><mrow></mrow><mrow><mn>15</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span>Z<span><math><mrow><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>→</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>I<span><math><msub><mrow></mrow><mrow><mn>13</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span>Y<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> transition has a low-temperature inhomogeneous linewidth of 1 GHz with hyperfine structure observable from the <sup>167</sup>Er isotope. A parametrized crystal-field Hamiltonian is fitted to 34 energy levels and the two ground state magnetic splitting factors. The wavefunctions are used to perform a transition intensity analysis and electric-dipole parameters are fitted to absorption oscillator strengths. Simulated spectra for the <sup>4</sup>I<span><math><mrow><msub><mrow></mrow><mrow><mn>11</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mrow><mo>→</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>I<span><math><msub><mrow></mrow><mrow><mn>15</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> and <sup>4</sup>I<span><math><mrow><msub><mrow></mrow><mrow><mn>13</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mrow><mo>→</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>I<span><math><msub><mrow></mrow><mrow><mn>15</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> inter-multiplet transitions are in excellent agreement with the experimentally measured spectra. The <sup>4</sup>I<span><math><msub><mrow></mrow><mrow><mn>13</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> excited state lifetime is 25.0<!--> <!-->ms and the intensity calculation is in excellent agreement with this value.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"24 ","pages":"Article 100365"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopy, crystal-field, and transition intensity analyses of the C3v(O2−) centre in Er3+ doped CaF2 crystals\",\"authors\":\"M.D. Moull , J.B.L. Martin , T.G.M. Newman , A.L. Jeffery , J.G. Bartholomew , J.-P.R. Wells , M.F. Reid\",\"doi\":\"10.1016/j.omx.2024.100365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Erbium ions in crystals show considerable promise for the technologies that will form the backbone of future networked quantum information technology. Despite advances in leveraging erbium’s fibre-compatible infrared transition for classical and quantum applications, the transitions are, in general, not well understood. We present detailed absorption and laser site-selective spectroscopy of the C<span><math><msub><mrow></mrow><mrow><mi>3v</mi></mrow></msub></math></span>(O<span><math><msup><mrow></mrow><mrow><mn>2</mn><mo>−</mo></mrow></msup></math></span>) centre in CaF<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>:Er<span><math><msup><mrow></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> as an interesting erbium site case study. The <sup>4</sup>I<span><math><msub><mrow></mrow><mrow><mn>15</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span>Z<span><math><mrow><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mo>→</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>I<span><math><msub><mrow></mrow><mrow><mn>13</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span>Y<span><math><msub><mrow></mrow><mrow><mn>1</mn></mrow></msub></math></span> transition has a low-temperature inhomogeneous linewidth of 1 GHz with hyperfine structure observable from the <sup>167</sup>Er isotope. A parametrized crystal-field Hamiltonian is fitted to 34 energy levels and the two ground state magnetic splitting factors. The wavefunctions are used to perform a transition intensity analysis and electric-dipole parameters are fitted to absorption oscillator strengths. Simulated spectra for the <sup>4</sup>I<span><math><mrow><msub><mrow></mrow><mrow><mn>11</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mrow><mo>→</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>I<span><math><msub><mrow></mrow><mrow><mn>15</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> and <sup>4</sup>I<span><math><mrow><msub><mrow></mrow><mrow><mn>13</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mrow><mo>→</mo></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span>I<span><math><msub><mrow></mrow><mrow><mn>15</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> inter-multiplet transitions are in excellent agreement with the experimentally measured spectra. The <sup>4</sup>I<span><math><msub><mrow></mrow><mrow><mn>13</mn><mo>/</mo><mn>2</mn></mrow></msub></math></span> excited state lifetime is 25.0<!--> <!-->ms and the intensity calculation is in excellent agreement with this value.</div></div>\",\"PeriodicalId\":52192,\"journal\":{\"name\":\"Optical Materials: X\",\"volume\":\"24 \",\"pages\":\"Article 100365\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590147824000779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Spectroscopy, crystal-field, and transition intensity analyses of the C3v(O2−) centre in Er3+ doped CaF2 crystals
Erbium ions in crystals show considerable promise for the technologies that will form the backbone of future networked quantum information technology. Despite advances in leveraging erbium’s fibre-compatible infrared transition for classical and quantum applications, the transitions are, in general, not well understood. We present detailed absorption and laser site-selective spectroscopy of the C(O) centre in CaF:Er as an interesting erbium site case study. The 4IZIY transition has a low-temperature inhomogeneous linewidth of 1 GHz with hyperfine structure observable from the 167Er isotope. A parametrized crystal-field Hamiltonian is fitted to 34 energy levels and the two ground state magnetic splitting factors. The wavefunctions are used to perform a transition intensity analysis and electric-dipole parameters are fitted to absorption oscillator strengths. Simulated spectra for the 4II and 4II inter-multiplet transitions are in excellent agreement with the experimentally measured spectra. The 4I excited state lifetime is 25.0 ms and the intensity calculation is in excellent agreement with this value.