Nazek A. Obeidat, Mahmoud S. Rawashdeh, Malak Q. Al Erjani
{"title":"有效转换机制的数值模拟与分数扩散波方程的收敛分析","authors":"Nazek A. Obeidat, Mahmoud S. Rawashdeh, Malak Q. Al Erjani","doi":"10.1016/j.padiff.2024.100947","DOIUrl":null,"url":null,"abstract":"<div><div>In the current study, we solve two very important mathematical models, such as the time fractional-order space-fractional telegraph and diffusion-wave equations using a reliable technique called the Adomian decomposition natural method (ADNM), which combines Adomian decomposition and natural transform. The diffusion wave equation describes the flood wave propagation, which is used in solving overland and open channel flow problems. For this reason, it is critical to fully understand and effectively solve the diffusion wave equations. Because telegraph equations are crucial for modeling and developing voltage or frequency transmission, they are widely used in physics and engineering. Furthermore, the designing process is greatly impacted by the uncertainty in the system parameters. For nonlinear ordinary differential equations based on the theorem of Banach fixed point, we provide existence and uniqueness theorem proofs. The present approach has been successfully used to explore exact solutions for time fractional-order and space fractional-order applications. The results show how effective and valuable the ADNM. This paper presents a methodology that will be used in future work to address similar nonlinear problems related to fractional calculus.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100947"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of an effective transform mechanism with convergence analysis of the fractional diffusion-wave equations\",\"authors\":\"Nazek A. Obeidat, Mahmoud S. Rawashdeh, Malak Q. Al Erjani\",\"doi\":\"10.1016/j.padiff.2024.100947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the current study, we solve two very important mathematical models, such as the time fractional-order space-fractional telegraph and diffusion-wave equations using a reliable technique called the Adomian decomposition natural method (ADNM), which combines Adomian decomposition and natural transform. The diffusion wave equation describes the flood wave propagation, which is used in solving overland and open channel flow problems. For this reason, it is critical to fully understand and effectively solve the diffusion wave equations. Because telegraph equations are crucial for modeling and developing voltage or frequency transmission, they are widely used in physics and engineering. Furthermore, the designing process is greatly impacted by the uncertainty in the system parameters. For nonlinear ordinary differential equations based on the theorem of Banach fixed point, we provide existence and uniqueness theorem proofs. The present approach has been successfully used to explore exact solutions for time fractional-order and space fractional-order applications. The results show how effective and valuable the ADNM. This paper presents a methodology that will be used in future work to address similar nonlinear problems related to fractional calculus.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100947\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Numerical simulation of an effective transform mechanism with convergence analysis of the fractional diffusion-wave equations
In the current study, we solve two very important mathematical models, such as the time fractional-order space-fractional telegraph and diffusion-wave equations using a reliable technique called the Adomian decomposition natural method (ADNM), which combines Adomian decomposition and natural transform. The diffusion wave equation describes the flood wave propagation, which is used in solving overland and open channel flow problems. For this reason, it is critical to fully understand and effectively solve the diffusion wave equations. Because telegraph equations are crucial for modeling and developing voltage or frequency transmission, they are widely used in physics and engineering. Furthermore, the designing process is greatly impacted by the uncertainty in the system parameters. For nonlinear ordinary differential equations based on the theorem of Banach fixed point, we provide existence and uniqueness theorem proofs. The present approach has been successfully used to explore exact solutions for time fractional-order and space fractional-order applications. The results show how effective and valuable the ADNM. This paper presents a methodology that will be used in future work to address similar nonlinear problems related to fractional calculus.