{"title":"在无穷远处具有简单行为的非线性延迟微分方程系统的动力学特性","authors":"A.A. Kashchenko, I.S. Luzin","doi":"10.1016/j.padiff.2024.100934","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the dynamics of a system of nonlinear differential equations with delay. We find stable equilibrium states and regions of attraction to them in the phase space of the system, as well as stable and unstable homogeneous and inhomogeneous cycles. We find conditions on the parameters of the system for multistability. We show that the coupling parameter has a decisive influence on the dynamics of the system. We find regions of the parameters of the system and extensive sets of initial conditions such that if we take these values of the parameters and any initial conditions from these sets, the system will have simple dynamics.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100934"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the system of delay differential equations with nonlinearity having a simple behavior at infinity\",\"authors\":\"A.A. Kashchenko, I.S. Luzin\",\"doi\":\"10.1016/j.padiff.2024.100934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the dynamics of a system of nonlinear differential equations with delay. We find stable equilibrium states and regions of attraction to them in the phase space of the system, as well as stable and unstable homogeneous and inhomogeneous cycles. We find conditions on the parameters of the system for multistability. We show that the coupling parameter has a decisive influence on the dynamics of the system. We find regions of the parameters of the system and extensive sets of initial conditions such that if we take these values of the parameters and any initial conditions from these sets, the system will have simple dynamics.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100934\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Dynamics of the system of delay differential equations with nonlinearity having a simple behavior at infinity
In this paper, we study the dynamics of a system of nonlinear differential equations with delay. We find stable equilibrium states and regions of attraction to them in the phase space of the system, as well as stable and unstable homogeneous and inhomogeneous cycles. We find conditions on the parameters of the system for multistability. We show that the coupling parameter has a decisive influence on the dynamics of the system. We find regions of the parameters of the system and extensive sets of initial conditions such that if we take these values of the parameters and any initial conditions from these sets, the system will have simple dynamics.