在无穷远处具有简单行为的非线性延迟微分方程系统的动力学特性

Q1 Mathematics
A.A. Kashchenko, I.S. Luzin
{"title":"在无穷远处具有简单行为的非线性延迟微分方程系统的动力学特性","authors":"A.A. Kashchenko,&nbsp;I.S. Luzin","doi":"10.1016/j.padiff.2024.100934","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the dynamics of a system of nonlinear differential equations with delay. We find stable equilibrium states and regions of attraction to them in the phase space of the system, as well as stable and unstable homogeneous and inhomogeneous cycles. We find conditions on the parameters of the system for multistability. We show that the coupling parameter has a decisive influence on the dynamics of the system. We find regions of the parameters of the system and extensive sets of initial conditions such that if we take these values of the parameters and any initial conditions from these sets, the system will have simple dynamics.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100934"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the system of delay differential equations with nonlinearity having a simple behavior at infinity\",\"authors\":\"A.A. Kashchenko,&nbsp;I.S. Luzin\",\"doi\":\"10.1016/j.padiff.2024.100934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the dynamics of a system of nonlinear differential equations with delay. We find stable equilibrium states and regions of attraction to them in the phase space of the system, as well as stable and unstable homogeneous and inhomogeneous cycles. We find conditions on the parameters of the system for multistability. We show that the coupling parameter has a decisive influence on the dynamics of the system. We find regions of the parameters of the system and extensive sets of initial conditions such that if we take these values of the parameters and any initial conditions from these sets, the system will have simple dynamics.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"12 \",\"pages\":\"Article 100934\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818124003206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一个带延迟的非线性微分方程系统的动力学。我们在系统的相空间中找到了稳定的平衡态和吸引平衡态的区域,以及稳定和不稳定的同质和非同质循环。我们找到了系统多稳定性的参数条件。我们证明了耦合参数对系统动力学的决定性影响。我们找到了系统参数的区域和初始条件的广泛集合,如果我们从这些集合中提取这些参数值和任何初始条件,系统将具有简单的动力学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of the system of delay differential equations with nonlinearity having a simple behavior at infinity
In this paper, we study the dynamics of a system of nonlinear differential equations with delay. We find stable equilibrium states and regions of attraction to them in the phase space of the system, as well as stable and unstable homogeneous and inhomogeneous cycles. We find conditions on the parameters of the system for multistability. We show that the coupling parameter has a decisive influence on the dynamics of the system. We find regions of the parameters of the system and extensive sets of initial conditions such that if we take these values of the parameters and any initial conditions from these sets, the system will have simple dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信