量化硅太阳能电池的原生和切边重组

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
W. Wöhler , J.M. Greulich , A.W. Bett
{"title":"量化硅太阳能电池的原生和切边重组","authors":"W. Wöhler ,&nbsp;J.M. Greulich ,&nbsp;A.W. Bett","doi":"10.1016/j.solmat.2024.113192","DOIUrl":null,"url":null,"abstract":"<div><div>To measure edge recombination of silicon solar cells, a refined perimeter to area methodology is presented and applied to a set of finished silicon heterojunction (SHJ) solar cells from an industrial batch. Different sample sizes are cut from these by thermal laser separation (TLS), giving samples with thermally cleaved, laser scribed and natively processed edges that are investigated. Surface recombination velocities are determined for all three edge types at injection levels of <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup><mspace></mspace><mi>to</mi><mspace></mspace><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup><mo>)</mo></mrow><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, with values at <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mtext>10</mtext><msup><mrow></mrow><mrow><mi>15</mi></mrow></msup><mspace></mspace><mtext>cm</mtext><msup><mrow></mrow><mrow><mi>−3</mi></mrow></msup></mrow></math></span> being <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>250</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>, <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>TLS</mtext></mrow></msub><mo>=</mo><mtext>750</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span> and <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>scribe</mtext></mrow></msub><mo>=</mo><mtext>11 000</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>. The injection dependence is dominated by recombination of ideality 2, with line-specific saturation current densities of <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,native</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>2.41</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,TLS</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>7.77</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,scribe</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>115</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>. The corresponding efficiency losses are approximated by numerical simulations with <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>-0.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the full cell as well as <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,half</mtext></mrow></msub><mo>=</mo><mtext>-0.3</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,shingle</mtext></mrow></msub><mo>=</mo><mtext>-1.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the TLS-cut half- and shingle cells. Overall, the method can be employed to quantify injection-level-dependent edge recombination on finished solar cells for accurate edge loss analysis and process optimization.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113192"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying native and cut edge recombination of silicon solar cells\",\"authors\":\"W. Wöhler ,&nbsp;J.M. Greulich ,&nbsp;A.W. Bett\",\"doi\":\"10.1016/j.solmat.2024.113192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To measure edge recombination of silicon solar cells, a refined perimeter to area methodology is presented and applied to a set of finished silicon heterojunction (SHJ) solar cells from an industrial batch. Different sample sizes are cut from these by thermal laser separation (TLS), giving samples with thermally cleaved, laser scribed and natively processed edges that are investigated. Surface recombination velocities are determined for all three edge types at injection levels of <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>14</mn></mrow></msup><mspace></mspace><mi>to</mi><mspace></mspace><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>15</mn></mrow></msup><mo>)</mo></mrow><mspace></mspace><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, with values at <span><math><mrow><mi>Δ</mi><mi>n</mi><mo>=</mo><mtext>10</mtext><msup><mrow></mrow><mrow><mi>15</mi></mrow></msup><mspace></mspace><mtext>cm</mtext><msup><mrow></mrow><mrow><mi>−3</mi></mrow></msup></mrow></math></span> being <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>250</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>, <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>TLS</mtext></mrow></msub><mo>=</mo><mtext>750</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span> and <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mtext>scribe</mtext></mrow></msub><mo>=</mo><mtext>11 000</mtext><mspace></mspace><mtext>cm/s</mtext></mrow></math></span>. The injection dependence is dominated by recombination of ideality 2, with line-specific saturation current densities of <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,native</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>2.41</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>, <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,TLS</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>7.77</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>j</mi></mrow><mrow><mi>02,scribe</mi></mrow><mrow><mi>λ</mi></mrow></msubsup><mo>=</mo><mtext>115</mtext><mspace></mspace><mtext>nA/cm</mtext></mrow></math></span>. The corresponding efficiency losses are approximated by numerical simulations with <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>native</mtext></mrow></msub><mo>=</mo><mtext>-0.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the full cell as well as <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,half</mtext></mrow></msub><mo>=</mo><mtext>-0.3</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> and <span><math><mrow><mi>Δ</mi><msub><mrow><mi>η</mi></mrow><mrow><mtext>TLS,shingle</mtext></mrow></msub><mo>=</mo><mtext>-1.1</mtext><mspace></mspace><mtext>%</mtext></mrow></math></span> for the TLS-cut half- and shingle cells. Overall, the method can be employed to quantify injection-level-dependent edge recombination on finished solar cells for accurate edge loss analysis and process optimization.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113192\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702482400504X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482400504X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

为了测量硅太阳能电池的边缘重组,本文介绍了一种经过改进的周长-面积方法,并将其应用于一组工业批量生产的硅异质结(SHJ)太阳能电池成品。通过热激光分离(TLS)从这些样品中切割出不同尺寸的样品,从而得到具有热裂解、激光划线和原生加工边缘的样品,并对其进行研究。在注入水平为 Δn=(1014 至 1015)cm-3 时,确定了所有三种边缘类型的表面重组速度,其中 Δn=1015cm-3 时的值分别为 Snative=250cm/s、STLS=750cm/s 和 Sscribe=11000cm/s。注入依赖性主要由意念度 2 的重组引起,特定线路的饱和电流密度分别为 j02,nativeλ=2.41nA/cm、j02,TLSλ=7.77nA/cm 和 j02,scribeλ=115nA/cm。相应的效率损失是通过数值模拟近似得出的,对于全电池,Δηnative=-0.1%;对于 TLS 切半和切片电池,ΔηTLS,half=-0.3% 和 ΔηTLS,shingle=-1.1%。总之,该方法可用于量化成品太阳能电池上依赖注入水平的边缘重组,以进行准确的边缘损耗分析和工艺优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying native and cut edge recombination of silicon solar cells
To measure edge recombination of silicon solar cells, a refined perimeter to area methodology is presented and applied to a set of finished silicon heterojunction (SHJ) solar cells from an industrial batch. Different sample sizes are cut from these by thermal laser separation (TLS), giving samples with thermally cleaved, laser scribed and natively processed edges that are investigated. Surface recombination velocities are determined for all three edge types at injection levels of Δn=(1014to1015)cm3, with values at Δn=1015cm−3 being Snative=250cm/s, STLS=750cm/s and Sscribe=11 000cm/s. The injection dependence is dominated by recombination of ideality 2, with line-specific saturation current densities of j02,nativeλ=2.41nA/cm, j02,TLSλ=7.77nA/cm and j02,scribeλ=115nA/cm. The corresponding efficiency losses are approximated by numerical simulations with Δηnative=-0.1% for the full cell as well as ΔηTLS,half=-0.3% and ΔηTLS,shingle=-1.1% for the TLS-cut half- and shingle cells. Overall, the method can be employed to quantify injection-level-dependent edge recombination on finished solar cells for accurate edge loss analysis and process optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信