卫星用三重结砷化镓太阳能电池平行失配下的热电耦合分析

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Xinyue Cao , Wenqi Zhao , Depeng Jiang , Zhen Zhang , Ming Liu , Lei Wang , Zheng Wang , Jie Fan , Kaixin Shi
{"title":"卫星用三重结砷化镓太阳能电池平行失配下的热电耦合分析","authors":"Xinyue Cao ,&nbsp;Wenqi Zhao ,&nbsp;Depeng Jiang ,&nbsp;Zhen Zhang ,&nbsp;Ming Liu ,&nbsp;Lei Wang ,&nbsp;Zheng Wang ,&nbsp;Jie Fan ,&nbsp;Kaixin Shi","doi":"10.1016/j.solmat.2024.113197","DOIUrl":null,"url":null,"abstract":"<div><div>Triple-junction gallium arsenide (GaAs) solar cells used in satellites can experience decreased reliability due to parallel mismatch during operation. This study presents a thermoelectric coupling model to calculate the temperature changes induced by parallel mismatch. The model's accuracy is verified using solar cell temperature data from space thermal environments and positive bias experimental conditions. The results indicate that when reverse current flows non-uniformly into the cell due to parallel mismatch, the temperature is higher compared to uniform current flow. The maximum relative error between the theoretically calculated temperature and the experimental result is 4.8 %. In space conditions, the on-orbit temperature data of the satellite solar cells during normal operation show a relative error of 5.69 %. When operating in space under 300 km orbital conditions, the cell temperature reaches 279 °C at a forward bias of 3.5 V with uniformly distributed reverse current, and 551 °C with non-uniformly distributed reverse current. With reasonable assumptions about local heat sources, the cell temperature can exceed 1000 °C under a current of 1.5 A, potentially causing permanent damage to the solar cell.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113197"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of thermoelectric coupling under parallel mismatch in triple-junction GaAs solar cells for satellites\",\"authors\":\"Xinyue Cao ,&nbsp;Wenqi Zhao ,&nbsp;Depeng Jiang ,&nbsp;Zhen Zhang ,&nbsp;Ming Liu ,&nbsp;Lei Wang ,&nbsp;Zheng Wang ,&nbsp;Jie Fan ,&nbsp;Kaixin Shi\",\"doi\":\"10.1016/j.solmat.2024.113197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Triple-junction gallium arsenide (GaAs) solar cells used in satellites can experience decreased reliability due to parallel mismatch during operation. This study presents a thermoelectric coupling model to calculate the temperature changes induced by parallel mismatch. The model's accuracy is verified using solar cell temperature data from space thermal environments and positive bias experimental conditions. The results indicate that when reverse current flows non-uniformly into the cell due to parallel mismatch, the temperature is higher compared to uniform current flow. The maximum relative error between the theoretically calculated temperature and the experimental result is 4.8 %. In space conditions, the on-orbit temperature data of the satellite solar cells during normal operation show a relative error of 5.69 %. When operating in space under 300 km orbital conditions, the cell temperature reaches 279 °C at a forward bias of 3.5 V with uniformly distributed reverse current, and 551 °C with non-uniformly distributed reverse current. With reasonable assumptions about local heat sources, the cell temperature can exceed 1000 °C under a current of 1.5 A, potentially causing permanent damage to the solar cell.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"278 \",\"pages\":\"Article 113197\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824005099\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005099","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

卫星使用的三结砷化镓(GaAs)太阳能电池在运行过程中可能会因平行失配而导致可靠性下降。本研究提出了一种热电耦合模型,用于计算平行失配引起的温度变化。利用太空热环境和正偏压实验条件下的太阳能电池温度数据验证了模型的准确性。结果表明,当平行失配导致反向电流不均匀地流入电池时,温度会比均匀电流高。理论计算温度与实验结果之间的最大相对误差为 4.8%。在太空条件下,卫星太阳能电池正常运行时的在轨温度数据显示相对误差为 5.69%。在 300 千米轨道条件下的太空中工作时,电池温度在正向偏置 3.5 V、反向电流均匀分布的情况下达到 279 ℃,在反向电流非均匀分布的情况下达到 551 ℃。根据对局部热源的合理假设,在电流为 1.5 A 的情况下,电池温度可超过 1000 °C,可能对太阳能电池造成永久性损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of thermoelectric coupling under parallel mismatch in triple-junction GaAs solar cells for satellites
Triple-junction gallium arsenide (GaAs) solar cells used in satellites can experience decreased reliability due to parallel mismatch during operation. This study presents a thermoelectric coupling model to calculate the temperature changes induced by parallel mismatch. The model's accuracy is verified using solar cell temperature data from space thermal environments and positive bias experimental conditions. The results indicate that when reverse current flows non-uniformly into the cell due to parallel mismatch, the temperature is higher compared to uniform current flow. The maximum relative error between the theoretically calculated temperature and the experimental result is 4.8 %. In space conditions, the on-orbit temperature data of the satellite solar cells during normal operation show a relative error of 5.69 %. When operating in space under 300 km orbital conditions, the cell temperature reaches 279 °C at a forward bias of 3.5 V with uniformly distributed reverse current, and 551 °C with non-uniformly distributed reverse current. With reasonable assumptions about local heat sources, the cell temperature can exceed 1000 °C under a current of 1.5 A, potentially causing permanent damage to the solar cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信