Zekun Li , Shunjie Kang , Qin Shu , Majida Al-Wraikat , Changchun Hao , Yongfeng Liu
{"title":"通过与咖啡多酚的非共价和共价结合改变乳铁蛋白的结构并改善其功能","authors":"Zekun Li , Shunjie Kang , Qin Shu , Majida Al-Wraikat , Changchun Hao , Yongfeng Liu","doi":"10.1016/j.ifset.2024.103838","DOIUrl":null,"url":null,"abstract":"<div><div>Studies have suggested that milk may enhance or neutralize the bioavailability of coffee polyphenols, possibly due to reversible and irreversible interactions between coffee polyphenols and milk proteins. The effects of non-covalent and covalent binding of lactoferrin (BLF) to caffeic acid (CAA) on protein structure and function were investigated. SDS-PAGE analysis confirmed the covalent interaction between BLF and CAA. Multispectral experiments characterized the BLF-CAA complexes and conjugates, revealing alterations in the tertiary structure of the proteins in the BLF-CAA conjugates. Molecular docking and kinetics results demonstrated that hydrogen bonding, electrostatic interaction, and hydrophobic forces were the primary internal forces between CAA and BLF. When combined with CAA, the covalent conjugates exhibited superior functional properties including solubility, oxidation resistance, thermal stability, emulsification and foamability, bioaccessibility, and antimicrobial properties. This study offers a theoretical foundation and technical benchmark for the preparation of protein-based delivery vectors with synergistic effects.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"97 ","pages":"Article 103838"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural modification and functional improvement of lactoferrin through non-covalent and covalent binding to coffee polyphenol\",\"authors\":\"Zekun Li , Shunjie Kang , Qin Shu , Majida Al-Wraikat , Changchun Hao , Yongfeng Liu\",\"doi\":\"10.1016/j.ifset.2024.103838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Studies have suggested that milk may enhance or neutralize the bioavailability of coffee polyphenols, possibly due to reversible and irreversible interactions between coffee polyphenols and milk proteins. The effects of non-covalent and covalent binding of lactoferrin (BLF) to caffeic acid (CAA) on protein structure and function were investigated. SDS-PAGE analysis confirmed the covalent interaction between BLF and CAA. Multispectral experiments characterized the BLF-CAA complexes and conjugates, revealing alterations in the tertiary structure of the proteins in the BLF-CAA conjugates. Molecular docking and kinetics results demonstrated that hydrogen bonding, electrostatic interaction, and hydrophobic forces were the primary internal forces between CAA and BLF. When combined with CAA, the covalent conjugates exhibited superior functional properties including solubility, oxidation resistance, thermal stability, emulsification and foamability, bioaccessibility, and antimicrobial properties. This study offers a theoretical foundation and technical benchmark for the preparation of protein-based delivery vectors with synergistic effects.</div></div>\",\"PeriodicalId\":329,\"journal\":{\"name\":\"Innovative Food Science & Emerging Technologies\",\"volume\":\"97 \",\"pages\":\"Article 103838\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovative Food Science & Emerging Technologies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1466856424002777\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424002777","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Structural modification and functional improvement of lactoferrin through non-covalent and covalent binding to coffee polyphenol
Studies have suggested that milk may enhance or neutralize the bioavailability of coffee polyphenols, possibly due to reversible and irreversible interactions between coffee polyphenols and milk proteins. The effects of non-covalent and covalent binding of lactoferrin (BLF) to caffeic acid (CAA) on protein structure and function were investigated. SDS-PAGE analysis confirmed the covalent interaction between BLF and CAA. Multispectral experiments characterized the BLF-CAA complexes and conjugates, revealing alterations in the tertiary structure of the proteins in the BLF-CAA conjugates. Molecular docking and kinetics results demonstrated that hydrogen bonding, electrostatic interaction, and hydrophobic forces were the primary internal forces between CAA and BLF. When combined with CAA, the covalent conjugates exhibited superior functional properties including solubility, oxidation resistance, thermal stability, emulsification and foamability, bioaccessibility, and antimicrobial properties. This study offers a theoretical foundation and technical benchmark for the preparation of protein-based delivery vectors with synergistic effects.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.