Jinze Wang , Hongyi Li , Yuting Zhang , Haipeng Li , Yanzhen Li , Zeyu Ma , Yifan Xiang
{"title":"密集地震阵列与环境噪声分析揭示的龙门山北部断层带浅层地壳结构","authors":"Jinze Wang , Hongyi Li , Yuting Zhang , Haipeng Li , Yanzhen Li , Zeyu Ma , Yifan Xiang","doi":"10.1016/j.jseaes.2024.106338","DOIUrl":null,"url":null,"abstract":"<div><div>The Longmen Shan (LMS) fault zone located in the southwest of China is not only the boundary tectonic zone of the Tibetan Plateau and South China block, but also an important part of the north–south seismic belt of China. To investigate the detailed crustal structure of the LMS fault zone, we deployed a dense seismic array of 151 short-period temporary stations in its northern section from March 16 to April 6, 2023. Continuous vertical component ambient noise waveforms recorded by these stations were cross-correlated for all station pairs, enabling the extraction of Rayleigh wave phase velocity dispersion curves across periods ranging from 0.5 s to 6 s. We then inverted these data to derive the crustal shear wave velocity using direct surface wave tomography. Meanwhile, a linear sub-array consisting of 54 stations and crossing the surface rupture of the 2008 Wenchuan earthquake was used to image the fault structure by applying the Transmitted Surface Wave Reverse Time Migration method (TSW-RTM). The ambient noise tomography results show that strong lateral heterogeneity exists in the shallow crust in the study area, with a high shear velocity in the northwest and a low shear velocity in the southeast. The low shear velocity is generally distributed between the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). The results of TSW-RTM indicate that the Wenchuan-Maoxian fault (WMF) and the YBF are both characterized with a steep dip to the northwest. Our results could serve as the important basis for the study of segmentation characteristics of the LMS fault and seismic hazard preparation and mitigation.</div></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":"276 ","pages":"Article 106338"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shallow crustal structure of the northern Longmen Shan fault zone revealed by a dense seismic array with ambient noise analysis\",\"authors\":\"Jinze Wang , Hongyi Li , Yuting Zhang , Haipeng Li , Yanzhen Li , Zeyu Ma , Yifan Xiang\",\"doi\":\"10.1016/j.jseaes.2024.106338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Longmen Shan (LMS) fault zone located in the southwest of China is not only the boundary tectonic zone of the Tibetan Plateau and South China block, but also an important part of the north–south seismic belt of China. To investigate the detailed crustal structure of the LMS fault zone, we deployed a dense seismic array of 151 short-period temporary stations in its northern section from March 16 to April 6, 2023. Continuous vertical component ambient noise waveforms recorded by these stations were cross-correlated for all station pairs, enabling the extraction of Rayleigh wave phase velocity dispersion curves across periods ranging from 0.5 s to 6 s. We then inverted these data to derive the crustal shear wave velocity using direct surface wave tomography. Meanwhile, a linear sub-array consisting of 54 stations and crossing the surface rupture of the 2008 Wenchuan earthquake was used to image the fault structure by applying the Transmitted Surface Wave Reverse Time Migration method (TSW-RTM). The ambient noise tomography results show that strong lateral heterogeneity exists in the shallow crust in the study area, with a high shear velocity in the northwest and a low shear velocity in the southeast. The low shear velocity is generally distributed between the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). The results of TSW-RTM indicate that the Wenchuan-Maoxian fault (WMF) and the YBF are both characterized with a steep dip to the northwest. Our results could serve as the important basis for the study of segmentation characteristics of the LMS fault and seismic hazard preparation and mitigation.</div></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":\"276 \",\"pages\":\"Article 106338\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136791202400333X\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136791202400333X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Shallow crustal structure of the northern Longmen Shan fault zone revealed by a dense seismic array with ambient noise analysis
The Longmen Shan (LMS) fault zone located in the southwest of China is not only the boundary tectonic zone of the Tibetan Plateau and South China block, but also an important part of the north–south seismic belt of China. To investigate the detailed crustal structure of the LMS fault zone, we deployed a dense seismic array of 151 short-period temporary stations in its northern section from March 16 to April 6, 2023. Continuous vertical component ambient noise waveforms recorded by these stations were cross-correlated for all station pairs, enabling the extraction of Rayleigh wave phase velocity dispersion curves across periods ranging from 0.5 s to 6 s. We then inverted these data to derive the crustal shear wave velocity using direct surface wave tomography. Meanwhile, a linear sub-array consisting of 54 stations and crossing the surface rupture of the 2008 Wenchuan earthquake was used to image the fault structure by applying the Transmitted Surface Wave Reverse Time Migration method (TSW-RTM). The ambient noise tomography results show that strong lateral heterogeneity exists in the shallow crust in the study area, with a high shear velocity in the northwest and a low shear velocity in the southeast. The low shear velocity is generally distributed between the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). The results of TSW-RTM indicate that the Wenchuan-Maoxian fault (WMF) and the YBF are both characterized with a steep dip to the northwest. Our results could serve as the important basis for the study of segmentation characteristics of the LMS fault and seismic hazard preparation and mitigation.
期刊介绍:
Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance.
The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.