细粒固体塑性流动从屈服到断裂的数学框架

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
{"title":"细粒固体塑性流动从屈服到断裂的数学框架","authors":"","doi":"10.1016/j.physb.2024.416570","DOIUrl":null,"url":null,"abstract":"<div><div>A newly proposed mathematical approach to plastic flow, holding from yield to fracture, of a fine-grained polycrystal with no voids or cracks is reviewed and applied to commercial steels. The formalism models the polycrystal by a continuum array of random deformable polyhedra leaving no voids between them, which can slide past each other along the shared faces when the shear stress resolved in the face plane exceeds a finite threshold. Grain reshaping for preserving matter continuity induces local forces assumed much weaker than those causing sliding. The relative velocity of adjacent sliding grains is taken as proportional to the local shear stress resolved in the common boundary plane. Explicit equations are derived for the plastic deformation, from yield to fracture. The analysis of mechanical tests of two commercial stainless steels is shown to illustrate how well the theory agrees with practice.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical framework for the plastic flow of fine-grained solids, from yield to fracture\",\"authors\":\"\",\"doi\":\"10.1016/j.physb.2024.416570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A newly proposed mathematical approach to plastic flow, holding from yield to fracture, of a fine-grained polycrystal with no voids or cracks is reviewed and applied to commercial steels. The formalism models the polycrystal by a continuum array of random deformable polyhedra leaving no voids between them, which can slide past each other along the shared faces when the shear stress resolved in the face plane exceeds a finite threshold. Grain reshaping for preserving matter continuity induces local forces assumed much weaker than those causing sliding. The relative velocity of adjacent sliding grains is taken as proportional to the local shear stress resolved in the common boundary plane. Explicit equations are derived for the plastic deformation, from yield to fracture. The analysis of mechanical tests of two commercial stainless steels is shown to illustrate how well the theory agrees with practice.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624009116\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624009116","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本文对一种新提出的数学方法进行了评述,该方法适用于没有空隙或裂缝的细粒度多晶体从屈服到断裂的塑性流动。这种形式主义是通过一个由随机可变形多面体组成的连续阵列对多晶体进行建模,这些多面体之间不留空隙,当面平面上的剪应力超过一个有限阈值时,这些多面体可以沿着共享面相互滑过。为保持物质连续性而进行的晶粒重塑会产生局部作用力,这种作用力假定比导致滑动的作用力弱得多。相邻滑动晶粒的相对速度与共同边界平面上的局部剪应力成正比。得出了从屈服到断裂的塑性变形的显式方程。对两种商用不锈钢的机械测试分析表明了理论与实践的吻合程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical framework for the plastic flow of fine-grained solids, from yield to fracture
A newly proposed mathematical approach to plastic flow, holding from yield to fracture, of a fine-grained polycrystal with no voids or cracks is reviewed and applied to commercial steels. The formalism models the polycrystal by a continuum array of random deformable polyhedra leaving no voids between them, which can slide past each other along the shared faces when the shear stress resolved in the face plane exceeds a finite threshold. Grain reshaping for preserving matter continuity induces local forces assumed much weaker than those causing sliding. The relative velocity of adjacent sliding grains is taken as proportional to the local shear stress resolved in the common boundary plane. Explicit equations are derived for the plastic deformation, from yield to fracture. The analysis of mechanical tests of two commercial stainless steels is shown to illustrate how well the theory agrees with practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信