Qinghua Guan , Wenhui Li , Mei Dai , Jin Qiao , Bin Wu , Zheng Zhang , Jingying Shi , Zunyang Song
{"title":"转录组分析揭示谷氨酸抑制鲜切马铃薯褐变调控的关键因素","authors":"Qinghua Guan , Wenhui Li , Mei Dai , Jin Qiao , Bin Wu , Zheng Zhang , Jingying Shi , Zunyang Song","doi":"10.1016/j.postharvbio.2024.113242","DOIUrl":null,"url":null,"abstract":"<div><div>Enzymatic browning is a major problem that seriously impacts the quality of fresh-cut potatoes. Our previous study found that glutamic acid (Glu) treatment could repress the discoloration of fresh-cut potatoes, but the molecular mechanism was still unknown. Herein, it was found that the content of total phenolic, H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub><sup>.-</sup> and the activities of PPO, POD and PAL were repressed, but the activities of CAT, APX, SOD and GPX were improved by Glu treatment. Moreover, transcriptomic analysis showed that an abundant number of differentially expressed genes (DEGs) were selected from fresh-cut potatoes browning between Glu and control groups. A comprehensive functional enrichment analysis showed that the metabolic pathways of glutathione metabolism, flavonoid biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction were markedly enriched, which transcriptional levels were markedly altered by Glu treatment. RT-qPCR confirmed the results of RNA-Seq that Glu repressed the transcription of <em>StPPO2</em>, <em>StPPO3</em>, <em>StPPO7</em>, and <em>StERF-BR1-like</em>. More importantly, as a nuclear protein, StERF-BR1-like activated the transcription of <em>StPPO2</em> by directly binding with its promoter. Overall, these data indicate that Glu could repress the browning of fresh-cut potatoes by regulating the pathways mentioned above, and StERF-BR1-like may involve this process by stimulating the expression of <em>StPPO2</em>.</div></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"219 ","pages":"Article 113242"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Key factors uncovered by transcriptomic analysis in the regulation of glutamic acid repressing the browning of fresh-cut potatoes\",\"authors\":\"Qinghua Guan , Wenhui Li , Mei Dai , Jin Qiao , Bin Wu , Zheng Zhang , Jingying Shi , Zunyang Song\",\"doi\":\"10.1016/j.postharvbio.2024.113242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Enzymatic browning is a major problem that seriously impacts the quality of fresh-cut potatoes. Our previous study found that glutamic acid (Glu) treatment could repress the discoloration of fresh-cut potatoes, but the molecular mechanism was still unknown. Herein, it was found that the content of total phenolic, H<sub>2</sub>O<sub>2</sub>, O<sub>2</sub><sup>.-</sup> and the activities of PPO, POD and PAL were repressed, but the activities of CAT, APX, SOD and GPX were improved by Glu treatment. Moreover, transcriptomic analysis showed that an abundant number of differentially expressed genes (DEGs) were selected from fresh-cut potatoes browning between Glu and control groups. A comprehensive functional enrichment analysis showed that the metabolic pathways of glutathione metabolism, flavonoid biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction were markedly enriched, which transcriptional levels were markedly altered by Glu treatment. RT-qPCR confirmed the results of RNA-Seq that Glu repressed the transcription of <em>StPPO2</em>, <em>StPPO3</em>, <em>StPPO7</em>, and <em>StERF-BR1-like</em>. More importantly, as a nuclear protein, StERF-BR1-like activated the transcription of <em>StPPO2</em> by directly binding with its promoter. Overall, these data indicate that Glu could repress the browning of fresh-cut potatoes by regulating the pathways mentioned above, and StERF-BR1-like may involve this process by stimulating the expression of <em>StPPO2</em>.</div></div>\",\"PeriodicalId\":20328,\"journal\":{\"name\":\"Postharvest Biology and Technology\",\"volume\":\"219 \",\"pages\":\"Article 113242\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Postharvest Biology and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925521424004873\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424004873","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Key factors uncovered by transcriptomic analysis in the regulation of glutamic acid repressing the browning of fresh-cut potatoes
Enzymatic browning is a major problem that seriously impacts the quality of fresh-cut potatoes. Our previous study found that glutamic acid (Glu) treatment could repress the discoloration of fresh-cut potatoes, but the molecular mechanism was still unknown. Herein, it was found that the content of total phenolic, H2O2, O2.- and the activities of PPO, POD and PAL were repressed, but the activities of CAT, APX, SOD and GPX were improved by Glu treatment. Moreover, transcriptomic analysis showed that an abundant number of differentially expressed genes (DEGs) were selected from fresh-cut potatoes browning between Glu and control groups. A comprehensive functional enrichment analysis showed that the metabolic pathways of glutathione metabolism, flavonoid biosynthesis, phenylalanine metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction were markedly enriched, which transcriptional levels were markedly altered by Glu treatment. RT-qPCR confirmed the results of RNA-Seq that Glu repressed the transcription of StPPO2, StPPO3, StPPO7, and StERF-BR1-like. More importantly, as a nuclear protein, StERF-BR1-like activated the transcription of StPPO2 by directly binding with its promoter. Overall, these data indicate that Glu could repress the browning of fresh-cut potatoes by regulating the pathways mentioned above, and StERF-BR1-like may involve this process by stimulating the expression of StPPO2.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.