{"title":"单声道噪声混响语音识别的高效联合训练模型","authors":"Xiaoyu Lian, Nan Xia, Gaole Dai, Hongqin Yang","doi":"10.1016/j.apacoust.2024.110322","DOIUrl":null,"url":null,"abstract":"<div><div>Noise and reverberation can seriously reduce speech quality and intelligibility, affecting the performance of downstream speech recognition tasks. This paper constructs a joint training speech recognition network for speech recognition in monaural noisy-reverberant environments. In the speech enhancement model, a complex-valued channel and temporal-frequency attention (CCTFA) are integrated to focus on the key features of the complex spectrum. Then the CCTFA network (CCTFANet) is constructed to reduce the influence of noise and reverberation. In the speech recognition model, an element-wise linear attention (EWLA) module is proposed to linearize the attention complexity and reduce the number of parameters and computations required for the attention module. Then the EWLA Conformer (EWLAC) is constructed as an efficient end-to-end speech recognition model. On the open source dataset, joint training of CCTFANet with EWLAC reduces the CER by 3.27%. Compared to other speech recognition models, EWLAC maintains CER while achieving much lower parameter count, computational overhead, and higher inference speed.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient joint training model for monaural noisy-reverberant speech recognition\",\"authors\":\"Xiaoyu Lian, Nan Xia, Gaole Dai, Hongqin Yang\",\"doi\":\"10.1016/j.apacoust.2024.110322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Noise and reverberation can seriously reduce speech quality and intelligibility, affecting the performance of downstream speech recognition tasks. This paper constructs a joint training speech recognition network for speech recognition in monaural noisy-reverberant environments. In the speech enhancement model, a complex-valued channel and temporal-frequency attention (CCTFA) are integrated to focus on the key features of the complex spectrum. Then the CCTFA network (CCTFANet) is constructed to reduce the influence of noise and reverberation. In the speech recognition model, an element-wise linear attention (EWLA) module is proposed to linearize the attention complexity and reduce the number of parameters and computations required for the attention module. Then the EWLA Conformer (EWLAC) is constructed as an efficient end-to-end speech recognition model. On the open source dataset, joint training of CCTFANet with EWLAC reduces the CER by 3.27%. Compared to other speech recognition models, EWLAC maintains CER while achieving much lower parameter count, computational overhead, and higher inference speed.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24004730\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004730","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
An efficient joint training model for monaural noisy-reverberant speech recognition
Noise and reverberation can seriously reduce speech quality and intelligibility, affecting the performance of downstream speech recognition tasks. This paper constructs a joint training speech recognition network for speech recognition in monaural noisy-reverberant environments. In the speech enhancement model, a complex-valued channel and temporal-frequency attention (CCTFA) are integrated to focus on the key features of the complex spectrum. Then the CCTFA network (CCTFANet) is constructed to reduce the influence of noise and reverberation. In the speech recognition model, an element-wise linear attention (EWLA) module is proposed to linearize the attention complexity and reduce the number of parameters and computations required for the attention module. Then the EWLA Conformer (EWLAC) is constructed as an efficient end-to-end speech recognition model. On the open source dataset, joint training of CCTFANet with EWLAC reduces the CER by 3.27%. Compared to other speech recognition models, EWLAC maintains CER while achieving much lower parameter count, computational overhead, and higher inference speed.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.