Yushuai Sang , Mingze Yang , Cedric Agyingi, Yongdan Li
{"title":"经证实五乙基苯酚(不是 2,6-二叔丁基-4-乙基苯酚)是愈创木酚乙醇烷基化反应的主要产物","authors":"Yushuai Sang , Mingze Yang , Cedric Agyingi, Yongdan Li","doi":"10.1016/j.cattod.2024.115081","DOIUrl":null,"url":null,"abstract":"<div><div>Guaiacol ethanol alkylation (GEA), a model reaction of lignin solvolysis, has been intensively investigated. However, the product identification with gas chromatograph-mass spectrometer (GC-MS) was wrong due to the defect of the GC-MS databases. In this work, the main product was isolated with a flash chromatography technique and analyzed with <sup>1</sup>H NMR and was identified as ethyl fully substituted phenol (or pentaethylphenol), which is contrary to the reported 2,6-di-tert-butyl-4-ethylphenol in previous literature. The NMR analysis of the entire product mixture further confirms that the product only contains ethyl substituted molecules, with no existence of isopropyl or tert-butyl substituted products. The byproducts, including ethyl partially substituted phenols, i.e., tetraethylphenol and triethylphenol, ethyl partially substituted guaiacol, 2-ethoxyphenol, and pentaethylbenzene, were also speculated based on the MS spectra. These findings rectify a long-standing error in product identification and may offer critical insights for mechanism investigations.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"445 ","pages":"Article 115081"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentaethylphenol (Not 2,6-di-tert-butyl-4-ethylphenol) verified as the primary product of guaiacol ethanol alkylation reaction\",\"authors\":\"Yushuai Sang , Mingze Yang , Cedric Agyingi, Yongdan Li\",\"doi\":\"10.1016/j.cattod.2024.115081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Guaiacol ethanol alkylation (GEA), a model reaction of lignin solvolysis, has been intensively investigated. However, the product identification with gas chromatograph-mass spectrometer (GC-MS) was wrong due to the defect of the GC-MS databases. In this work, the main product was isolated with a flash chromatography technique and analyzed with <sup>1</sup>H NMR and was identified as ethyl fully substituted phenol (or pentaethylphenol), which is contrary to the reported 2,6-di-tert-butyl-4-ethylphenol in previous literature. The NMR analysis of the entire product mixture further confirms that the product only contains ethyl substituted molecules, with no existence of isopropyl or tert-butyl substituted products. The byproducts, including ethyl partially substituted phenols, i.e., tetraethylphenol and triethylphenol, ethyl partially substituted guaiacol, 2-ethoxyphenol, and pentaethylbenzene, were also speculated based on the MS spectra. These findings rectify a long-standing error in product identification and may offer critical insights for mechanism investigations.</div></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":\"445 \",\"pages\":\"Article 115081\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586124005753\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124005753","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Pentaethylphenol (Not 2,6-di-tert-butyl-4-ethylphenol) verified as the primary product of guaiacol ethanol alkylation reaction
Guaiacol ethanol alkylation (GEA), a model reaction of lignin solvolysis, has been intensively investigated. However, the product identification with gas chromatograph-mass spectrometer (GC-MS) was wrong due to the defect of the GC-MS databases. In this work, the main product was isolated with a flash chromatography technique and analyzed with 1H NMR and was identified as ethyl fully substituted phenol (or pentaethylphenol), which is contrary to the reported 2,6-di-tert-butyl-4-ethylphenol in previous literature. The NMR analysis of the entire product mixture further confirms that the product only contains ethyl substituted molecules, with no existence of isopropyl or tert-butyl substituted products. The byproducts, including ethyl partially substituted phenols, i.e., tetraethylphenol and triethylphenol, ethyl partially substituted guaiacol, 2-ethoxyphenol, and pentaethylbenzene, were also speculated based on the MS spectra. These findings rectify a long-standing error in product identification and may offer critical insights for mechanism investigations.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.