{"title":"带有倾斜磁场和热辐射的旋转系统中的 MHD 混合纳米流体流动","authors":"","doi":"10.1016/j.csite.2024.105182","DOIUrl":null,"url":null,"abstract":"<div><div>The innovation of nanofluid has contributed significantly towards a decrease in friction and an increase in heat transmission rates. So, the purpose of this research is to investigate magnetohydrodynamics nanofluid flow in a rotating system for heat, mass, and microorganism transfer. The rotating system has lower and upper plates positioned at <span><math><mrow><msub><mi>y</mi><mn>0</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>y</mi><mi>h</mi></msub></mrow></math></span>. Different solid nanoparticles i.e. copper, graphene, and oxide nanoparticles i.e. titanium oxide, aluminum oxide, and water as base fluid are used to prepare different hybrid nanofluids. Such fluids have applications in medical technologies, aerospace, cooling systems, hyperthermia treatment, and energy systems like nuclear reactors and solar systems. Additionally, it improves environmental engineering by improving pollutant movement and removal during water treatment. These different applications highlight the importance of present research. Heat, mass, and microorganism transmission incorporating inclined magnetic force and thermal radiation effects are discussed in detail. Through a similarity function, the governing equations are transformed into interconnected ordinary differential equations (ODEs). Using MATLAB's bvp4c ODE solver, numerical and graphical solutions are derived. Detailed exploration is conducted on the impacts of various parameters such as thermophoresis, Peclet number, Schmidt number, inclination angle, magnetic field, and rotation on velocity, temperature, volumetric concentration, and motile concentration. Notably, the maximum heat transfer rate occurs when the radiation parameter varies from 0 to 15, highlighting maximum heat transfer in the absence of radiation. The Peclet number is between 5 and 20, and the motile microorganism transmission rate changes from 7.3 to 20 for <em>Cu/Graphene</em> nanoparticles and 6.4 to 21 for <span><math><mrow><msub><mrow><mi>A</mi><mi>l</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>/</mo><msub><mrow><mi>T</mi><mi>i</mi><mi>O</mi></mrow><mn>2</mn></msub></mrow></math></span> nanoparticles fluid. This shows the efficiency of both types of hybrid nanofluids.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHD hybrid nanofluid flow in a rotating system with an inclined magnetic field and thermal radiation\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The innovation of nanofluid has contributed significantly towards a decrease in friction and an increase in heat transmission rates. So, the purpose of this research is to investigate magnetohydrodynamics nanofluid flow in a rotating system for heat, mass, and microorganism transfer. The rotating system has lower and upper plates positioned at <span><math><mrow><msub><mi>y</mi><mn>0</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>y</mi><mi>h</mi></msub></mrow></math></span>. Different solid nanoparticles i.e. copper, graphene, and oxide nanoparticles i.e. titanium oxide, aluminum oxide, and water as base fluid are used to prepare different hybrid nanofluids. Such fluids have applications in medical technologies, aerospace, cooling systems, hyperthermia treatment, and energy systems like nuclear reactors and solar systems. Additionally, it improves environmental engineering by improving pollutant movement and removal during water treatment. These different applications highlight the importance of present research. Heat, mass, and microorganism transmission incorporating inclined magnetic force and thermal radiation effects are discussed in detail. Through a similarity function, the governing equations are transformed into interconnected ordinary differential equations (ODEs). Using MATLAB's bvp4c ODE solver, numerical and graphical solutions are derived. Detailed exploration is conducted on the impacts of various parameters such as thermophoresis, Peclet number, Schmidt number, inclination angle, magnetic field, and rotation on velocity, temperature, volumetric concentration, and motile concentration. Notably, the maximum heat transfer rate occurs when the radiation parameter varies from 0 to 15, highlighting maximum heat transfer in the absence of radiation. The Peclet number is between 5 and 20, and the motile microorganism transmission rate changes from 7.3 to 20 for <em>Cu/Graphene</em> nanoparticles and 6.4 to 21 for <span><math><mrow><msub><mrow><mi>A</mi><mi>l</mi></mrow><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub><mo>/</mo><msub><mrow><mi>T</mi><mi>i</mi><mi>O</mi></mrow><mn>2</mn></msub></mrow></math></span> nanoparticles fluid. This shows the efficiency of both types of hybrid nanofluids.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24012139\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012139","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
MHD hybrid nanofluid flow in a rotating system with an inclined magnetic field and thermal radiation
The innovation of nanofluid has contributed significantly towards a decrease in friction and an increase in heat transmission rates. So, the purpose of this research is to investigate magnetohydrodynamics nanofluid flow in a rotating system for heat, mass, and microorganism transfer. The rotating system has lower and upper plates positioned at and . Different solid nanoparticles i.e. copper, graphene, and oxide nanoparticles i.e. titanium oxide, aluminum oxide, and water as base fluid are used to prepare different hybrid nanofluids. Such fluids have applications in medical technologies, aerospace, cooling systems, hyperthermia treatment, and energy systems like nuclear reactors and solar systems. Additionally, it improves environmental engineering by improving pollutant movement and removal during water treatment. These different applications highlight the importance of present research. Heat, mass, and microorganism transmission incorporating inclined magnetic force and thermal radiation effects are discussed in detail. Through a similarity function, the governing equations are transformed into interconnected ordinary differential equations (ODEs). Using MATLAB's bvp4c ODE solver, numerical and graphical solutions are derived. Detailed exploration is conducted on the impacts of various parameters such as thermophoresis, Peclet number, Schmidt number, inclination angle, magnetic field, and rotation on velocity, temperature, volumetric concentration, and motile concentration. Notably, the maximum heat transfer rate occurs when the radiation parameter varies from 0 to 15, highlighting maximum heat transfer in the absence of radiation. The Peclet number is between 5 and 20, and the motile microorganism transmission rate changes from 7.3 to 20 for Cu/Graphene nanoparticles and 6.4 to 21 for nanoparticles fluid. This shows the efficiency of both types of hybrid nanofluids.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.