用于夏克-哈特曼传感器和偏转测量的带状形状重构

IF 3.5 2区 工程技术 Q2 OPTICS
Jonquière Hugo, Mugnier Laurent M., Michau Vincent, Mercier-Ythier Renaud
{"title":"用于夏克-哈特曼传感器和偏转测量的带状形状重构","authors":"Jonquière Hugo,&nbsp;Mugnier Laurent M.,&nbsp;Michau Vincent,&nbsp;Mercier-Ythier Renaud","doi":"10.1016/j.optlaseng.2024.108615","DOIUrl":null,"url":null,"abstract":"<div><div>Some metrological means, such as Shack-Hartmann, deflectometry sensors or fringe projection profilometry, measure the shape of an optical surface indirectly from slope measurements. Zonal shape reconstruction, a method to reconstruct shape with a high number of degrees of freedom, is used for all of these applications. It has risen in interest with the use of deflectometers for the acquisition of high resolution slope data for optical manufacturing, especially because shape reconstruction is limiting in terms of shape estimation error.</div><div>Zonal reconstruction methods all rely on the choice of a data formation model, a basis on which the shape will be decomposed, and an estimator. In this paper, we first study the canonical Fried and Southwell models of the literature and analyze their limitations. We show that modeling the slope measurement by a point-wise derivative as they both do can induce a bias on the shape estimation, and that the bases on which the shape is decomposed are imposed because of this assumption.</div><div>In the second part of this paper, we propose to build an unbiased model of the data formation, without constraints on the choice of the decomposition basis. We then compare these models to the canonical models of Fried and Southwell.</div><div>Lastly, we perform a regularized MAP reconstruction, and compare the performance in terms of total shape error of this method to the state of the art for the Southwell and Fried models, first by simulation, then on experimental data. We demonstrate that the suggested method outperforms the canonical models in terms of total shape reconstruction error on a deflectometry measurement of the high-frequency content of a freeform mirror.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zonal shape reconstruction for Shack-Hartmann sensors and deflectometry\",\"authors\":\"Jonquière Hugo,&nbsp;Mugnier Laurent M.,&nbsp;Michau Vincent,&nbsp;Mercier-Ythier Renaud\",\"doi\":\"10.1016/j.optlaseng.2024.108615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Some metrological means, such as Shack-Hartmann, deflectometry sensors or fringe projection profilometry, measure the shape of an optical surface indirectly from slope measurements. Zonal shape reconstruction, a method to reconstruct shape with a high number of degrees of freedom, is used for all of these applications. It has risen in interest with the use of deflectometers for the acquisition of high resolution slope data for optical manufacturing, especially because shape reconstruction is limiting in terms of shape estimation error.</div><div>Zonal reconstruction methods all rely on the choice of a data formation model, a basis on which the shape will be decomposed, and an estimator. In this paper, we first study the canonical Fried and Southwell models of the literature and analyze their limitations. We show that modeling the slope measurement by a point-wise derivative as they both do can induce a bias on the shape estimation, and that the bases on which the shape is decomposed are imposed because of this assumption.</div><div>In the second part of this paper, we propose to build an unbiased model of the data formation, without constraints on the choice of the decomposition basis. We then compare these models to the canonical models of Fried and Southwell.</div><div>Lastly, we perform a regularized MAP reconstruction, and compare the performance in terms of total shape error of this method to the state of the art for the Southwell and Fried models, first by simulation, then on experimental data. We demonstrate that the suggested method outperforms the canonical models in terms of total shape reconstruction error on a deflectometry measurement of the high-frequency content of a freeform mirror.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005931\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005931","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

一些计量方法,例如夏克-哈特曼测量法、偏转测量传感器或条纹投影轮廓测量法,可通过斜率测量间接测量光学表面的形状。带状形状重构是一种以较高自由度重构形状的方法,可用于所有这些应用。随着用于光学制造的高分辨率斜率数据采集的偏转仪的使用,特别是由于形状重构在形状估计误差方面的限制,人们对这种方法的兴趣日益浓厚。在本文中,我们首先研究了文献中的典型弗里德模型和索斯韦尔模型,并分析了它们的局限性。我们发现,这两种模型都是通过随点导数对斜率测量进行建模,这可能会导致形状估计出现偏差,而分解形状的基础就是因为这一假设而被强加的。在本文的第二部分,我们建议建立一个无偏的数据形成模型,而不对分解基础的选择进行限制。然后,我们将这些模型与弗里德和索斯韦尔的典型模型进行比较。最后,我们进行了正则化 MAP 重构,并比较了该方法与索斯韦尔和弗里德模型在总形状误差方面的性能,首先是模拟,然后是实验数据。我们证明,在自由曲面镜高频内容的偏转测量中,所建议的方法在总形状重建误差方面优于经典模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zonal shape reconstruction for Shack-Hartmann sensors and deflectometry
Some metrological means, such as Shack-Hartmann, deflectometry sensors or fringe projection profilometry, measure the shape of an optical surface indirectly from slope measurements. Zonal shape reconstruction, a method to reconstruct shape with a high number of degrees of freedom, is used for all of these applications. It has risen in interest with the use of deflectometers for the acquisition of high resolution slope data for optical manufacturing, especially because shape reconstruction is limiting in terms of shape estimation error.
Zonal reconstruction methods all rely on the choice of a data formation model, a basis on which the shape will be decomposed, and an estimator. In this paper, we first study the canonical Fried and Southwell models of the literature and analyze their limitations. We show that modeling the slope measurement by a point-wise derivative as they both do can induce a bias on the shape estimation, and that the bases on which the shape is decomposed are imposed because of this assumption.
In the second part of this paper, we propose to build an unbiased model of the data formation, without constraints on the choice of the decomposition basis. We then compare these models to the canonical models of Fried and Southwell.
Lastly, we perform a regularized MAP reconstruction, and compare the performance in terms of total shape error of this method to the state of the art for the Southwell and Fried models, first by simulation, then on experimental data. We demonstrate that the suggested method outperforms the canonical models in terms of total shape reconstruction error on a deflectometry measurement of the high-frequency content of a freeform mirror.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信