Xiu-Mei Song , Hai-Fei Ye , Jiang-Li Song , Yan-Jie Xi , Yancheng Wu
{"title":"基于信息和通信技术的新型 \"开启式 \"荧光比色传感器,用于检测氟离子和氰离子","authors":"Xiu-Mei Song , Hai-Fei Ye , Jiang-Li Song , Yan-Jie Xi , Yancheng Wu","doi":"10.1016/j.jphotochem.2024.116069","DOIUrl":null,"url":null,"abstract":"<div><div>A novel sensor (Sensor <strong>2</strong>) containing a fluorescent core of aromatic naphthalene and a binding site of aminothiourea group has been synthesized and systematically investigated with regard to anions recognition. The results indicate that Sensor <strong>2</strong> shows fast response, high selectivity and sensitivity and reversibility to detect fluoride (F<sup>−</sup>) and cyanide (CN<sup>−</sup>). Adding F<sup>−</sup>/CN<sup>−</sup> into DMSO solution of Sensor <strong>2</strong> induces a distinct color change from colorless to yellow under ambient light and from blue to greenish-blue under 365 nm UV light. Besides, Sensor <strong>2</strong> can distinguish F<sup>−</sup> from CN<sup>−</sup> by fluorescent spectra based on the different sensitivities of Sensor <strong>2</strong> to F<sup>−</sup> and CN<sup>−</sup>, as well as “turn on” at the different emission wavelengths. The sensing mechanism has been proposed and verified by ESI-MS, <sup>1</sup>H NMR titration, DFT and TD-DFT calculations, which refers to the interaction of Sensor <strong>2</strong> with F<sup>−</sup> and CN<sup>−</sup> <em>via</em> forming hydrogen bond and subsequent deprotonation. The reversibility of Sensor <strong>2</strong> was also studied, confirming that it is a reusable sensor. In addition, the preliminary application of Sensor <strong>2</strong> for the detection of fluoride in toothpaste was successful.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"459 ","pages":"Article 116069"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel “turn on” fluorescent and colorimetric ICT-based sensor for the detection of fluoride and cyanide ions\",\"authors\":\"Xiu-Mei Song , Hai-Fei Ye , Jiang-Li Song , Yan-Jie Xi , Yancheng Wu\",\"doi\":\"10.1016/j.jphotochem.2024.116069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel sensor (Sensor <strong>2</strong>) containing a fluorescent core of aromatic naphthalene and a binding site of aminothiourea group has been synthesized and systematically investigated with regard to anions recognition. The results indicate that Sensor <strong>2</strong> shows fast response, high selectivity and sensitivity and reversibility to detect fluoride (F<sup>−</sup>) and cyanide (CN<sup>−</sup>). Adding F<sup>−</sup>/CN<sup>−</sup> into DMSO solution of Sensor <strong>2</strong> induces a distinct color change from colorless to yellow under ambient light and from blue to greenish-blue under 365 nm UV light. Besides, Sensor <strong>2</strong> can distinguish F<sup>−</sup> from CN<sup>−</sup> by fluorescent spectra based on the different sensitivities of Sensor <strong>2</strong> to F<sup>−</sup> and CN<sup>−</sup>, as well as “turn on” at the different emission wavelengths. The sensing mechanism has been proposed and verified by ESI-MS, <sup>1</sup>H NMR titration, DFT and TD-DFT calculations, which refers to the interaction of Sensor <strong>2</strong> with F<sup>−</sup> and CN<sup>−</sup> <em>via</em> forming hydrogen bond and subsequent deprotonation. The reversibility of Sensor <strong>2</strong> was also studied, confirming that it is a reusable sensor. In addition, the preliminary application of Sensor <strong>2</strong> for the detection of fluoride in toothpaste was successful.</div></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":\"459 \",\"pages\":\"Article 116069\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024006130\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024006130","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A novel “turn on” fluorescent and colorimetric ICT-based sensor for the detection of fluoride and cyanide ions
A novel sensor (Sensor 2) containing a fluorescent core of aromatic naphthalene and a binding site of aminothiourea group has been synthesized and systematically investigated with regard to anions recognition. The results indicate that Sensor 2 shows fast response, high selectivity and sensitivity and reversibility to detect fluoride (F−) and cyanide (CN−). Adding F−/CN− into DMSO solution of Sensor 2 induces a distinct color change from colorless to yellow under ambient light and from blue to greenish-blue under 365 nm UV light. Besides, Sensor 2 can distinguish F− from CN− by fluorescent spectra based on the different sensitivities of Sensor 2 to F− and CN−, as well as “turn on” at the different emission wavelengths. The sensing mechanism has been proposed and verified by ESI-MS, 1H NMR titration, DFT and TD-DFT calculations, which refers to the interaction of Sensor 2 with F− and CN−via forming hydrogen bond and subsequent deprotonation. The reversibility of Sensor 2 was also studied, confirming that it is a reusable sensor. In addition, the preliminary application of Sensor 2 for the detection of fluoride in toothpaste was successful.
期刊介绍:
JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds.
All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor).
The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.