基于数字自校准点源全息图的单次菲涅尔不相干全息术

IF 3.5 2区 工程技术 Q2 OPTICS
Huiyang Wang , Tianzhi Wen , Shengde Liu , Hongzhan Liu , Migao Li , Xiaoxu Lu
{"title":"基于数字自校准点源全息图的单次菲涅尔不相干全息术","authors":"Huiyang Wang ,&nbsp;Tianzhi Wen ,&nbsp;Shengde Liu ,&nbsp;Hongzhan Liu ,&nbsp;Migao Li ,&nbsp;Xiaoxu Lu","doi":"10.1016/j.optlaseng.2024.108616","DOIUrl":null,"url":null,"abstract":"<div><div>Achieving high quality 3D imaging with single exposure has always been the goal of Fresnel incoherent correlation digital holography (FINCH). However, there is a trade-off between space-time bandwidth product and system complexity, resulting in lower reconstruction quality of FINCH. Here, we propose a single-shot FINCH method based on digital self-calibrated point source holograms (PSHs) to achieve dynamic 3D imaging. Firstly, it demonstrates that a single FINCH hologram integrates information from multiple incoherently superimposed PSHs, so that the reconstructed images exhibit significant sparsity variations in the gradient domain when correlated with the PSHs to be calibrated. As a result, we can conveniently achieve accurate PSHs of objects at different depth planes by digital self-calibration algorithm. Furthermore, by combining the digital self-calibrated PSHs with a compressive sensing (CS) reconstruction algorithm, the quality of the 3D reconstruction can be effectively enhanced, showing excellent performance in improving lateral and axial resolution. Importantly, this method offers a new strategy for simplifying implementation system and improving space-time bandwidth product of FINCH technology, and then achieves high quality 3D imaging of dynamic scene.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-shot Fresnel incoherent correlation holography based on digital self-calibrated point source holograms\",\"authors\":\"Huiyang Wang ,&nbsp;Tianzhi Wen ,&nbsp;Shengde Liu ,&nbsp;Hongzhan Liu ,&nbsp;Migao Li ,&nbsp;Xiaoxu Lu\",\"doi\":\"10.1016/j.optlaseng.2024.108616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Achieving high quality 3D imaging with single exposure has always been the goal of Fresnel incoherent correlation digital holography (FINCH). However, there is a trade-off between space-time bandwidth product and system complexity, resulting in lower reconstruction quality of FINCH. Here, we propose a single-shot FINCH method based on digital self-calibrated point source holograms (PSHs) to achieve dynamic 3D imaging. Firstly, it demonstrates that a single FINCH hologram integrates information from multiple incoherently superimposed PSHs, so that the reconstructed images exhibit significant sparsity variations in the gradient domain when correlated with the PSHs to be calibrated. As a result, we can conveniently achieve accurate PSHs of objects at different depth planes by digital self-calibration algorithm. Furthermore, by combining the digital self-calibrated PSHs with a compressive sensing (CS) reconstruction algorithm, the quality of the 3D reconstruction can be effectively enhanced, showing excellent performance in improving lateral and axial resolution. Importantly, this method offers a new strategy for simplifying implementation system and improving space-time bandwidth product of FINCH technology, and then achieves high quality 3D imaging of dynamic scene.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624005943\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624005943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

菲涅尔非相干数字全息技术(FINCH)的目标一直是通过单次曝光实现高质量的三维成像。然而,时空带宽积和系统复杂性之间存在权衡,导致 FINCH 的重建质量较低。在此,我们提出了一种基于数字自校准点源全息图(PSHs)的单镜头 FINCH 方法,以实现动态三维成像。首先,它证明了单个 FINCH 全息图可整合多个非相干叠加点源全息图的信息,因此当与待校准点源全息图相关联时,重建图像在梯度域表现出显著的稀疏性变化。因此,我们可以通过数字自校准算法方便地实现不同深度平面上物体的精确 PSH。此外,通过将数字自校准 PSH 与压缩传感(CS)重建算法相结合,可有效提高三维重建的质量,在提高横向和轴向分辨率方面表现出色。重要的是,该方法为简化 FINCH 技术的实施系统和提高时空带宽乘积提供了一种新策略,进而实现对动态场景的高质量三维成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single-shot Fresnel incoherent correlation holography based on digital self-calibrated point source holograms
Achieving high quality 3D imaging with single exposure has always been the goal of Fresnel incoherent correlation digital holography (FINCH). However, there is a trade-off between space-time bandwidth product and system complexity, resulting in lower reconstruction quality of FINCH. Here, we propose a single-shot FINCH method based on digital self-calibrated point source holograms (PSHs) to achieve dynamic 3D imaging. Firstly, it demonstrates that a single FINCH hologram integrates information from multiple incoherently superimposed PSHs, so that the reconstructed images exhibit significant sparsity variations in the gradient domain when correlated with the PSHs to be calibrated. As a result, we can conveniently achieve accurate PSHs of objects at different depth planes by digital self-calibration algorithm. Furthermore, by combining the digital self-calibrated PSHs with a compressive sensing (CS) reconstruction algorithm, the quality of the 3D reconstruction can be effectively enhanced, showing excellent performance in improving lateral and axial resolution. Importantly, this method offers a new strategy for simplifying implementation system and improving space-time bandwidth product of FINCH technology, and then achieves high quality 3D imaging of dynamic scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信