Kaiqi Lang , Jiaqing Qiang , Yuyi Qiu , Xiaoping Wang
{"title":"基于连接域分析的多焦全息图自动聚焦方法","authors":"Kaiqi Lang , Jiaqing Qiang , Yuyi Qiu , Xiaoping Wang","doi":"10.1016/j.optlaseng.2024.108624","DOIUrl":null,"url":null,"abstract":"<div><div>Holography is widely used for imaging plankton because of its large depth of field. Autofocusing is a critical step in holographic imaging, where the optimal focal plane is determined by locating the extremum of the evaluation function curve. However, most of these methods perform auto-focusing on single focus holograms. To apply these methods to multi-focus holograms, the hologram must be subjected to object segmentation. It is difficult to achieve good results when focusing on holograms with small objects and large depth of field. Therefore, we propose a multi-focus autofocus method based on connected domain analysis (CDA), which allows focusing on multiple objects at different focal lengths simultaneously without image segmentation. Each object generates a focus evaluation curve, resulting in high focusing accuracy. We set up an in-line holographic optical system with a 30 mm depth of field and recorded holograms of <em>Nauplius, Cladocera, Rotifera, Copepods, Noctiluca scintillans</em> and real seawater samples. We demonstrated the robustness of the CDA algorithm for different target types and its effectiveness in focusing multi-focus images by applying it to holograms of six types of samples.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108624"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autofocusing method for multifocal holograms based on connected domain analysis\",\"authors\":\"Kaiqi Lang , Jiaqing Qiang , Yuyi Qiu , Xiaoping Wang\",\"doi\":\"10.1016/j.optlaseng.2024.108624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Holography is widely used for imaging plankton because of its large depth of field. Autofocusing is a critical step in holographic imaging, where the optimal focal plane is determined by locating the extremum of the evaluation function curve. However, most of these methods perform auto-focusing on single focus holograms. To apply these methods to multi-focus holograms, the hologram must be subjected to object segmentation. It is difficult to achieve good results when focusing on holograms with small objects and large depth of field. Therefore, we propose a multi-focus autofocus method based on connected domain analysis (CDA), which allows focusing on multiple objects at different focal lengths simultaneously without image segmentation. Each object generates a focus evaluation curve, resulting in high focusing accuracy. We set up an in-line holographic optical system with a 30 mm depth of field and recorded holograms of <em>Nauplius, Cladocera, Rotifera, Copepods, Noctiluca scintillans</em> and real seawater samples. We demonstrated the robustness of the CDA algorithm for different target types and its effectiveness in focusing multi-focus images by applying it to holograms of six types of samples.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":\"184 \",\"pages\":\"Article 108624\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014381662400602X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014381662400602X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Autofocusing method for multifocal holograms based on connected domain analysis
Holography is widely used for imaging plankton because of its large depth of field. Autofocusing is a critical step in holographic imaging, where the optimal focal plane is determined by locating the extremum of the evaluation function curve. However, most of these methods perform auto-focusing on single focus holograms. To apply these methods to multi-focus holograms, the hologram must be subjected to object segmentation. It is difficult to achieve good results when focusing on holograms with small objects and large depth of field. Therefore, we propose a multi-focus autofocus method based on connected domain analysis (CDA), which allows focusing on multiple objects at different focal lengths simultaneously without image segmentation. Each object generates a focus evaluation curve, resulting in high focusing accuracy. We set up an in-line holographic optical system with a 30 mm depth of field and recorded holograms of Nauplius, Cladocera, Rotifera, Copepods, Noctiluca scintillans and real seawater samples. We demonstrated the robustness of the CDA algorithm for different target types and its effectiveness in focusing multi-focus images by applying it to holograms of six types of samples.
期刊介绍:
Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods.
Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following:
-Optical Metrology-
Optical Methods for 3D visualization and virtual engineering-
Optical Techniques for Microsystems-
Imaging, Microscopy and Adaptive Optics-
Computational Imaging-
Laser methods in manufacturing-
Integrated optical and photonic sensors-
Optics and Photonics in Life Science-
Hyperspectral and spectroscopic methods-
Infrared and Terahertz techniques