使用富缺陷石墨烯阴极在 NaO2 电池中对放电产物进行表面控制沉积

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
M. Enterría , L. Medinilla , S.N. Faisal , Y. Zhang , J.M. López del Amo , I. Ruiz De Larramendi , L. Lezama , D.L. Officer , G.G. Wallace , N. Ortiz-Vitoriano
{"title":"使用富缺陷石墨烯阴极在 NaO2 电池中对放电产物进行表面控制沉积","authors":"M. Enterría ,&nbsp;L. Medinilla ,&nbsp;S.N. Faisal ,&nbsp;Y. Zhang ,&nbsp;J.M. López del Amo ,&nbsp;I. Ruiz De Larramendi ,&nbsp;L. Lezama ,&nbsp;D.L. Officer ,&nbsp;G.G. Wallace ,&nbsp;N. Ortiz-Vitoriano","doi":"10.1016/j.susmat.2024.e01135","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium‑oxygen (Na<img>O<sub>2</sub>) batteries are promising high-capacity devices for future energy storage, replacing the unsustainable dependence on fossil fuels. These batteries convert molecular oxygen into sodium superoxide (NaO<sub>2</sub>) which is deposited during discharge at the cathode. It has been demonstrated that the morphology of the discharged NaO<sub>2</sub> is critical for battery performance, as the insulating nature of these solid products leads to premature cell death by passivating the cathode surface at high discharge capacities. These constraints seriously affect the battery rechargeability by hindering the oxidation of NaO<sub>2</sub> during charge. In this context, the size and distribution of the discharged solid particles is crucial for the implementation of these batteries. Here, we present a template-assisted electro crystallization of NaO<sub>2</sub> in Na<img>O<sub>2</sub> batteries by using a graphene cathode enriched with atomic defects. The high free energy of such atomic defects induces the nucleation of few-micron sized NaO<sub>2</sub> cubes strategically localized at dispersed points of the surface. The high dispersion of small superoxide particles, by a surface-controlled crystallization, increases the cyclability of the battery at high discharge capacities, which is the major bottleneck in metal-air battery technology.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01135"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface-controlled deposition of discharge products in NaO2 batteries using a defect-rich graphene cathode\",\"authors\":\"M. Enterría ,&nbsp;L. Medinilla ,&nbsp;S.N. Faisal ,&nbsp;Y. Zhang ,&nbsp;J.M. López del Amo ,&nbsp;I. Ruiz De Larramendi ,&nbsp;L. Lezama ,&nbsp;D.L. Officer ,&nbsp;G.G. Wallace ,&nbsp;N. Ortiz-Vitoriano\",\"doi\":\"10.1016/j.susmat.2024.e01135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sodium‑oxygen (Na<img>O<sub>2</sub>) batteries are promising high-capacity devices for future energy storage, replacing the unsustainable dependence on fossil fuels. These batteries convert molecular oxygen into sodium superoxide (NaO<sub>2</sub>) which is deposited during discharge at the cathode. It has been demonstrated that the morphology of the discharged NaO<sub>2</sub> is critical for battery performance, as the insulating nature of these solid products leads to premature cell death by passivating the cathode surface at high discharge capacities. These constraints seriously affect the battery rechargeability by hindering the oxidation of NaO<sub>2</sub> during charge. In this context, the size and distribution of the discharged solid particles is crucial for the implementation of these batteries. Here, we present a template-assisted electro crystallization of NaO<sub>2</sub> in Na<img>O<sub>2</sub> batteries by using a graphene cathode enriched with atomic defects. The high free energy of such atomic defects induces the nucleation of few-micron sized NaO<sub>2</sub> cubes strategically localized at dispersed points of the surface. The high dispersion of small superoxide particles, by a surface-controlled crystallization, increases the cyclability of the battery at high discharge capacities, which is the major bottleneck in metal-air battery technology.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"42 \",\"pages\":\"Article e01135\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724003154\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003154","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

钠氧(NaO2)电池是未来很有前途的高容量储能设备,可取代对化石燃料的不可持续的依赖。这些电池将分子氧转化为超氧化钠(NaO2),在阴极放电时沉积下来。研究表明,放电 NaO2 的形态对电池性能至关重要,因为这些固态产物的绝缘性能会在高放电容量时钝化阴极表面,导致电池过早死亡。这些限制会阻碍 NaO2 在充电过程中氧化,从而严重影响电池的可充电性。在这种情况下,放电固体颗粒的大小和分布对这些电池的实施至关重要。在此,我们提出了一种模板辅助 NaO2 电池中 NaO2 的电结晶方法,即使用富含原子缺陷的石墨烯阴极。这种原子缺陷的高自由能促使几微米大小的 NaO2 立方体成核,并战略性地分布在表面的分散点上。通过表面控制结晶,小过氧化物颗粒的高度分散提高了电池在高放电容量下的循环能力,而这正是金属空气电池技术的主要瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface-controlled deposition of discharge products in NaO2 batteries using a defect-rich graphene cathode
Sodium‑oxygen (NaO2) batteries are promising high-capacity devices for future energy storage, replacing the unsustainable dependence on fossil fuels. These batteries convert molecular oxygen into sodium superoxide (NaO2) which is deposited during discharge at the cathode. It has been demonstrated that the morphology of the discharged NaO2 is critical for battery performance, as the insulating nature of these solid products leads to premature cell death by passivating the cathode surface at high discharge capacities. These constraints seriously affect the battery rechargeability by hindering the oxidation of NaO2 during charge. In this context, the size and distribution of the discharged solid particles is crucial for the implementation of these batteries. Here, we present a template-assisted electro crystallization of NaO2 in NaO2 batteries by using a graphene cathode enriched with atomic defects. The high free energy of such atomic defects induces the nucleation of few-micron sized NaO2 cubes strategically localized at dispersed points of the surface. The high dispersion of small superoxide particles, by a surface-controlled crystallization, increases the cyclability of the battery at high discharge capacities, which is the major bottleneck in metal-air battery technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信