{"title":"利用增强型 RetinaNet 在无人机图像中检测油棕榈树","authors":"","doi":"10.1016/j.compag.2024.109530","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate inventory management of oil palm trees is crucial for optimizing yield and monitoring the health and growth of plantations. However, detecting and counting oil palm trees, particularly young trees that blend into complex environments, presents significant challenges for deep learning models. While current methods perform well in detecting mature oil palm trees, they often struggle to generalize across the diverse variations found in both young and mature trees. In this study, we propose an enhanced RetinaNet model that incorporates deformable convolutions into the ResNet-50 backbone, deeper feature pyramid layers, and an intersection-over-union-aware branch in a multi-head configuration to improve detection performance. The model was evaluated using a diverse dataset of unmanned aerial vehicle imagery from multiple regions, encompassing oil palm and coconut trees, as well as banana plants. To refine detection, confidence thresholding and non-maximum suppression were applied during inference, filtering out low-confidence predictions and eliminating duplicate detections. Experimental results demonstrate that our method outperforms state-of-the-art models, achieving F1-scores of 0.947 and 0.902 for single- and dual-species detection tasks, respectively, surpassing existing approaches by 1.5–6.3%. These findings highlight the model’s ability to accurately detect oil palm trees, particularly young ones in complex backgrounds, offering a reliable solution to support sustainable agriculture and improved land management.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil palm tree detection in UAV imagery using an enhanced RetinaNet\",\"authors\":\"\",\"doi\":\"10.1016/j.compag.2024.109530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate inventory management of oil palm trees is crucial for optimizing yield and monitoring the health and growth of plantations. However, detecting and counting oil palm trees, particularly young trees that blend into complex environments, presents significant challenges for deep learning models. While current methods perform well in detecting mature oil palm trees, they often struggle to generalize across the diverse variations found in both young and mature trees. In this study, we propose an enhanced RetinaNet model that incorporates deformable convolutions into the ResNet-50 backbone, deeper feature pyramid layers, and an intersection-over-union-aware branch in a multi-head configuration to improve detection performance. The model was evaluated using a diverse dataset of unmanned aerial vehicle imagery from multiple regions, encompassing oil palm and coconut trees, as well as banana plants. To refine detection, confidence thresholding and non-maximum suppression were applied during inference, filtering out low-confidence predictions and eliminating duplicate detections. Experimental results demonstrate that our method outperforms state-of-the-art models, achieving F1-scores of 0.947 and 0.902 for single- and dual-species detection tasks, respectively, surpassing existing approaches by 1.5–6.3%. These findings highlight the model’s ability to accurately detect oil palm trees, particularly young ones in complex backgrounds, offering a reliable solution to support sustainable agriculture and improved land management.</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924009219\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924009219","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Oil palm tree detection in UAV imagery using an enhanced RetinaNet
Accurate inventory management of oil palm trees is crucial for optimizing yield and monitoring the health and growth of plantations. However, detecting and counting oil palm trees, particularly young trees that blend into complex environments, presents significant challenges for deep learning models. While current methods perform well in detecting mature oil palm trees, they often struggle to generalize across the diverse variations found in both young and mature trees. In this study, we propose an enhanced RetinaNet model that incorporates deformable convolutions into the ResNet-50 backbone, deeper feature pyramid layers, and an intersection-over-union-aware branch in a multi-head configuration to improve detection performance. The model was evaluated using a diverse dataset of unmanned aerial vehicle imagery from multiple regions, encompassing oil palm and coconut trees, as well as banana plants. To refine detection, confidence thresholding and non-maximum suppression were applied during inference, filtering out low-confidence predictions and eliminating duplicate detections. Experimental results demonstrate that our method outperforms state-of-the-art models, achieving F1-scores of 0.947 and 0.902 for single- and dual-species detection tasks, respectively, surpassing existing approaches by 1.5–6.3%. These findings highlight the model’s ability to accurately detect oil palm trees, particularly young ones in complex backgrounds, offering a reliable solution to support sustainable agriculture and improved land management.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.