利用机器学习和深度学习分析电子商务领域客户满意度的预测模型

Hoanh-Su Le , Thao-Vy Huynh Do , Minh Hoang Nguyen , Hoang-Anh Tran , Thanh-Thuy Thi Pham , Nhung Thi Nguyen , Van-Ho Nguyen
{"title":"利用机器学习和深度学习分析电子商务领域客户满意度的预测模型","authors":"Hoanh-Su Le ,&nbsp;Thao-Vy Huynh Do ,&nbsp;Minh Hoang Nguyen ,&nbsp;Hoang-Anh Tran ,&nbsp;Thanh-Thuy Thi Pham ,&nbsp;Nhung Thi Nguyen ,&nbsp;Van-Ho Nguyen","doi":"10.1016/j.jjimei.2024.100295","DOIUrl":null,"url":null,"abstract":"<div><div>In Vietnam's rapidly expanding e-commerce landscape, there is a critical need for advanced tools that can effectively analyze customer feedback to boost satisfaction and loyalty. This paper introduces a two-step predictive framework merging deep learning and traditional machine learning to analyze Vietnamese e-commerce reviews. Utilizing a dataset of 10,021 reviews on Tiki, Shopee, Sendo, and Hasaki between 2015 and 2023, the framework first employs fine-tuned deep learning models like BERT and Bi-GRU to extract aspect-based sentiments from reviews, tailored for the nuances of the Vietnamese language. Subsequently, machine learning algorithms like XGBoost predict customer satisfaction by integrating sentiment analysis with e-commerce data such as product prices. Results show BERT and Bi-GRU yield over 70% sentiment accuracy, while XGBoost achieves 80%+ satisfaction prediction accuracy. This framework offers a potent solution for discerning customer sentiments and enhancing satisfaction in Vietnam's dynamic e-commerce landscape.</div></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100295"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive model for customer satisfaction analytics in E-commerce sector using machine learning and deep learning\",\"authors\":\"Hoanh-Su Le ,&nbsp;Thao-Vy Huynh Do ,&nbsp;Minh Hoang Nguyen ,&nbsp;Hoang-Anh Tran ,&nbsp;Thanh-Thuy Thi Pham ,&nbsp;Nhung Thi Nguyen ,&nbsp;Van-Ho Nguyen\",\"doi\":\"10.1016/j.jjimei.2024.100295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In Vietnam's rapidly expanding e-commerce landscape, there is a critical need for advanced tools that can effectively analyze customer feedback to boost satisfaction and loyalty. This paper introduces a two-step predictive framework merging deep learning and traditional machine learning to analyze Vietnamese e-commerce reviews. Utilizing a dataset of 10,021 reviews on Tiki, Shopee, Sendo, and Hasaki between 2015 and 2023, the framework first employs fine-tuned deep learning models like BERT and Bi-GRU to extract aspect-based sentiments from reviews, tailored for the nuances of the Vietnamese language. Subsequently, machine learning algorithms like XGBoost predict customer satisfaction by integrating sentiment analysis with e-commerce data such as product prices. Results show BERT and Bi-GRU yield over 70% sentiment accuracy, while XGBoost achieves 80%+ satisfaction prediction accuracy. This framework offers a potent solution for discerning customer sentiments and enhancing satisfaction in Vietnam's dynamic e-commerce landscape.</div></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在越南快速发展的电子商务领域,亟需能够有效分析客户反馈的先进工具,以提高满意度和忠诚度。本文介绍了一种融合深度学习和传统机器学习的两步预测框架,用于分析越南电子商务评论。利用 2015 年至 2023 年期间 Tiki、Shopee、Sendo 和 Hasaki 上的 10,021 条评论数据集,该框架首先采用 BERT 和 Bi-GRU 等经过微调的深度学习模型,从评论中提取基于方面的情感,并针对越南语的细微差别进行定制。随后,XGBoost 等机器学习算法通过将情感分析与产品价格等电子商务数据相结合来预测客户满意度。结果表明,BERT 和 Bi-GRU 的情感准确率超过 70%,而 XGBoost 的满意度预测准确率超过 80%。该框架为越南动态电子商务环境中辨别客户情感和提高满意度提供了有力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive model for customer satisfaction analytics in E-commerce sector using machine learning and deep learning
In Vietnam's rapidly expanding e-commerce landscape, there is a critical need for advanced tools that can effectively analyze customer feedback to boost satisfaction and loyalty. This paper introduces a two-step predictive framework merging deep learning and traditional machine learning to analyze Vietnamese e-commerce reviews. Utilizing a dataset of 10,021 reviews on Tiki, Shopee, Sendo, and Hasaki between 2015 and 2023, the framework first employs fine-tuned deep learning models like BERT and Bi-GRU to extract aspect-based sentiments from reviews, tailored for the nuances of the Vietnamese language. Subsequently, machine learning algorithms like XGBoost predict customer satisfaction by integrating sentiment analysis with e-commerce data such as product prices. Results show BERT and Bi-GRU yield over 70% sentiment accuracy, while XGBoost achieves 80%+ satisfaction prediction accuracy. This framework offers a potent solution for discerning customer sentiments and enhancing satisfaction in Vietnam's dynamic e-commerce landscape.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信