Pei Zhang , Fuwei Gu , Zhongliang Cao , Hao Wang , Zhiyang Chen , Hu Xiao , Xinkun Wang , Guoliang Ma
{"title":"复合材料包覆压力容器中薄壁金属内衬临界屈曲压力的理论和实验研究","authors":"Pei Zhang , Fuwei Gu , Zhongliang Cao , Hao Wang , Zhiyang Chen , Hu Xiao , Xinkun Wang , Guoliang Ma","doi":"10.1016/j.ijpvp.2024.105335","DOIUrl":null,"url":null,"abstract":"<div><div>Composite overwrapped pressure vessels (COPVs) are widely used in the field of high-pressure gas storage and transportation because of their light weight and high strength. In engineering, autofrettage is usually used to improve the fatigue life of composite pressure overwrapped vessels with metal liners. However, excessive pressure of autofrettage could cause buckling damage to the metal liner. In order to determine the upper limit of autofrettage (critical buckling pressure) and analyze its influence on the safety factor of COPVs, a theoretical calculation model of the critical buckling pressure about the metal liner was established based on classical laminated plate theory and the confined buckling theory. Then, a COPV with thin-walled welded metal liner was prepared by fiber winding process. In order to monitor and judge the buckling damage mode of the liner, the circumferential strain of the COPV's cylinder was measured by loading and unloading step-by-step. Finally, the influence of materials and dimensions of the metal liner on the pressure ratio (the ratio of the first layer failure pressure to the critical buckling pressure of the COPV's metal liner) was discussed. When the diameter to thickness ratio (R/t) of the metal liner was greater than 35, the pressure ratios of the 6063-T5 aluminum alloy liner and the S30408 stainless steel liner both exceeded 2.25. However, the pressure ratio of 6061-T6 aluminum alloy liner with R/t ≤ 60 was lower than 1.85, which shows that the metal liner with higher yield strength and lower elastic modulus has higher utilization rate of fiber winding layers. Due to the fact that the current design standards only ensure the reliability of COPVs through safety factors and various type testing with their evaluation methods, the proposed theoretical calculation method can reduce the uncertainty of COPVs during the design and testing rounds.</div></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"212 ","pages":"Article 105335"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and experimental research on the critical buckling pressure of the thin-walled metal liner installed in the composite overwrapped pressure vessel\",\"authors\":\"Pei Zhang , Fuwei Gu , Zhongliang Cao , Hao Wang , Zhiyang Chen , Hu Xiao , Xinkun Wang , Guoliang Ma\",\"doi\":\"10.1016/j.ijpvp.2024.105335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Composite overwrapped pressure vessels (COPVs) are widely used in the field of high-pressure gas storage and transportation because of their light weight and high strength. In engineering, autofrettage is usually used to improve the fatigue life of composite pressure overwrapped vessels with metal liners. However, excessive pressure of autofrettage could cause buckling damage to the metal liner. In order to determine the upper limit of autofrettage (critical buckling pressure) and analyze its influence on the safety factor of COPVs, a theoretical calculation model of the critical buckling pressure about the metal liner was established based on classical laminated plate theory and the confined buckling theory. Then, a COPV with thin-walled welded metal liner was prepared by fiber winding process. In order to monitor and judge the buckling damage mode of the liner, the circumferential strain of the COPV's cylinder was measured by loading and unloading step-by-step. Finally, the influence of materials and dimensions of the metal liner on the pressure ratio (the ratio of the first layer failure pressure to the critical buckling pressure of the COPV's metal liner) was discussed. When the diameter to thickness ratio (R/t) of the metal liner was greater than 35, the pressure ratios of the 6063-T5 aluminum alloy liner and the S30408 stainless steel liner both exceeded 2.25. However, the pressure ratio of 6061-T6 aluminum alloy liner with R/t ≤ 60 was lower than 1.85, which shows that the metal liner with higher yield strength and lower elastic modulus has higher utilization rate of fiber winding layers. Due to the fact that the current design standards only ensure the reliability of COPVs through safety factors and various type testing with their evaluation methods, the proposed theoretical calculation method can reduce the uncertainty of COPVs during the design and testing rounds.</div></div>\",\"PeriodicalId\":54946,\"journal\":{\"name\":\"International Journal of Pressure Vessels and Piping\",\"volume\":\"212 \",\"pages\":\"Article 105335\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pressure Vessels and Piping\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308016124002126\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124002126","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Theoretical and experimental research on the critical buckling pressure of the thin-walled metal liner installed in the composite overwrapped pressure vessel
Composite overwrapped pressure vessels (COPVs) are widely used in the field of high-pressure gas storage and transportation because of their light weight and high strength. In engineering, autofrettage is usually used to improve the fatigue life of composite pressure overwrapped vessels with metal liners. However, excessive pressure of autofrettage could cause buckling damage to the metal liner. In order to determine the upper limit of autofrettage (critical buckling pressure) and analyze its influence on the safety factor of COPVs, a theoretical calculation model of the critical buckling pressure about the metal liner was established based on classical laminated plate theory and the confined buckling theory. Then, a COPV with thin-walled welded metal liner was prepared by fiber winding process. In order to monitor and judge the buckling damage mode of the liner, the circumferential strain of the COPV's cylinder was measured by loading and unloading step-by-step. Finally, the influence of materials and dimensions of the metal liner on the pressure ratio (the ratio of the first layer failure pressure to the critical buckling pressure of the COPV's metal liner) was discussed. When the diameter to thickness ratio (R/t) of the metal liner was greater than 35, the pressure ratios of the 6063-T5 aluminum alloy liner and the S30408 stainless steel liner both exceeded 2.25. However, the pressure ratio of 6061-T6 aluminum alloy liner with R/t ≤ 60 was lower than 1.85, which shows that the metal liner with higher yield strength and lower elastic modulus has higher utilization rate of fiber winding layers. Due to the fact that the current design standards only ensure the reliability of COPVs through safety factors and various type testing with their evaluation methods, the proposed theoretical calculation method can reduce the uncertainty of COPVs during the design and testing rounds.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.