探索α-Ge(1 1 1)单层在光催化水分离制氢中的潜力

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Vinícius G. Garcia , Guilherme J. Inacio , Luciano F. Filho , Luíza T. Pacheco , Fernando N.N. Pansini , Marcos G. Menezes , Wendel S. Paz
{"title":"探索α-Ge(1 1 1)单层在光催化水分离制氢中的潜力","authors":"Vinícius G. Garcia ,&nbsp;Guilherme J. Inacio ,&nbsp;Luciano F. Filho ,&nbsp;Luíza T. Pacheco ,&nbsp;Fernando N.N. Pansini ,&nbsp;Marcos G. Menezes ,&nbsp;Wendel S. Paz","doi":"10.1016/j.flatc.2024.100753","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the structural, electronic, and optical properties of 2D α-Ge(1 1 1) are investigated using Density Functional Theory (DFT) calculations, complemented by many-body perturbation theory calculations based on the GW/BSE approach. The thermodynamic stability of this material is assessed through <em>ab initio</em> molecular dynamics simulations (AIMD), and their dynamic stability is confirmed via phonon dispersion calculations. The analysis of the optical properties reveals significant absorption peaks in both visible and ultraviolet regions, with an absorption edge at 47 eV (1<em>.</em>87 eV without excitonic effects). The band edges are well-aligned with water redox potentials at neutral pH, making them suitable for water-splitting applications. For other pH levels, we find the process may be feasible through the participation of different excited states populated by light absorption. Remarkably, the α-Ge(1 1 1) monolayer demonstrates a predicted solar-to-hydrogen conversion efficiency of 34.80 %, outperforming many other two-dimensional materials. These findings position the α-Ge(1 1 1) monolayer as a promising candidate for developing efficient photocatalytic materials for hydrogen generation via overall water splitting.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100753"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the potential of α-Ge(1 1 1) monolayer in photocatalytic water splitting for hydrogen production\",\"authors\":\"Vinícius G. Garcia ,&nbsp;Guilherme J. Inacio ,&nbsp;Luciano F. Filho ,&nbsp;Luíza T. Pacheco ,&nbsp;Fernando N.N. Pansini ,&nbsp;Marcos G. Menezes ,&nbsp;Wendel S. Paz\",\"doi\":\"10.1016/j.flatc.2024.100753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the structural, electronic, and optical properties of 2D α-Ge(1 1 1) are investigated using Density Functional Theory (DFT) calculations, complemented by many-body perturbation theory calculations based on the GW/BSE approach. The thermodynamic stability of this material is assessed through <em>ab initio</em> molecular dynamics simulations (AIMD), and their dynamic stability is confirmed via phonon dispersion calculations. The analysis of the optical properties reveals significant absorption peaks in both visible and ultraviolet regions, with an absorption edge at 47 eV (1<em>.</em>87 eV without excitonic effects). The band edges are well-aligned with water redox potentials at neutral pH, making them suitable for water-splitting applications. For other pH levels, we find the process may be feasible through the participation of different excited states populated by light absorption. Remarkably, the α-Ge(1 1 1) monolayer demonstrates a predicted solar-to-hydrogen conversion efficiency of 34.80 %, outperforming many other two-dimensional materials. These findings position the α-Ge(1 1 1) monolayer as a promising candidate for developing efficient photocatalytic materials for hydrogen generation via overall water splitting.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"48 \",\"pages\":\"Article 100753\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001478\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001478","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用密度泛函理论(DFT)计算,并辅以基于 GW/BSE 方法的多体扰动理论计算,研究了二维 α-Ge(1 1 1)的结构、电子和光学特性。通过原子分子动力学模拟 (AIMD) 评估了这种材料的热力学稳定性,并通过声子色散计算证实了其动态稳定性。光学特性分析表明,该材料在可见光和紫外光区域都有明显的吸收峰,吸收边缘为 47 eV(无激子效应时为 1.87 eV)。在中性 pH 值下,吸收带边缘与水的氧化还原电位完全一致,因此适合用于水分离应用。对于其他 pH 值,我们发现通过光吸收填充的不同激发态的参与,该过程可能是可行的。值得注意的是,α-Ge(1 1 1)单层的太阳能-氢气转换效率预计可达 34.80%,超过了许多其他二维材料。这些发现将α-Ge(1 1 1)单层定位为开发高效光催化材料的理想候选材料,可通过整体水分裂产生氢气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the potential of α-Ge(1 1 1) monolayer in photocatalytic water splitting for hydrogen production

Exploring the potential of α-Ge(1 1 1) monolayer in photocatalytic water splitting for hydrogen production
In this study, the structural, electronic, and optical properties of 2D α-Ge(1 1 1) are investigated using Density Functional Theory (DFT) calculations, complemented by many-body perturbation theory calculations based on the GW/BSE approach. The thermodynamic stability of this material is assessed through ab initio molecular dynamics simulations (AIMD), and their dynamic stability is confirmed via phonon dispersion calculations. The analysis of the optical properties reveals significant absorption peaks in both visible and ultraviolet regions, with an absorption edge at 47 eV (1.87 eV without excitonic effects). The band edges are well-aligned with water redox potentials at neutral pH, making them suitable for water-splitting applications. For other pH levels, we find the process may be feasible through the participation of different excited states populated by light absorption. Remarkably, the α-Ge(1 1 1) monolayer demonstrates a predicted solar-to-hydrogen conversion efficiency of 34.80 %, outperforming many other two-dimensional materials. These findings position the α-Ge(1 1 1) monolayer as a promising candidate for developing efficient photocatalytic materials for hydrogen generation via overall water splitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信