{"title":"通过添加 TiC 和 Cr2C3 实现电弧放电修复 718Plus 部件的 Laves 相控制和拉伸性能优化","authors":"Yuanhang Chen, Chunli Yang","doi":"10.1016/j.matchar.2024.114415","DOIUrl":null,"url":null,"abstract":"<div><div>Directed energy deposition-arc (DED-arc) additive manufacturing technology was used to repair the damaged 718Plus components. This work shows that TiC/Cr<sub>2</sub>C<sub>3</sub> addition to 718Plus alloy is an effective way to suppress the formation of the unfavorable Laves phase. TiC additions to 718Plus alloy can alleviate the elemental segregation, refine the dendritic structure and promote the formation of blocky TiC-NbC core-shell carbides and NbC carbides, while Cr<sub>2</sub>C<sub>3</sub> additions enable the precipitation of rod-like NbC carbides. During the deposition process, the TiC/Cr<sub>2</sub>C<sub>3</sub> additions were dissolved into the molten pool and decomposed into Ti, Cr, and C. The introduction of additional carbon in the melt drastically consumed the Nb available for Laves phase. The tensile tests show that TiC addition to 718Plus alloy contributed to an increased tensile strength of about 120 MPa due to the reduced amount of Laves phase and the reinforced effect of carbides. The fracture behaviour of carbides was explained in detail. The critical shear stress for blocky carbides to crack is higher than that required for rod-like ones, suggesting that TiC additions were desirable for better ductility compared with Cr<sub>2</sub>C<sub>3</sub> additions.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"217 ","pages":"Article 114415"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laves phase control and tensile properties optimization of DED-arc repaired 718Plus components through the addition of TiC and Cr2C3\",\"authors\":\"Yuanhang Chen, Chunli Yang\",\"doi\":\"10.1016/j.matchar.2024.114415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Directed energy deposition-arc (DED-arc) additive manufacturing technology was used to repair the damaged 718Plus components. This work shows that TiC/Cr<sub>2</sub>C<sub>3</sub> addition to 718Plus alloy is an effective way to suppress the formation of the unfavorable Laves phase. TiC additions to 718Plus alloy can alleviate the elemental segregation, refine the dendritic structure and promote the formation of blocky TiC-NbC core-shell carbides and NbC carbides, while Cr<sub>2</sub>C<sub>3</sub> additions enable the precipitation of rod-like NbC carbides. During the deposition process, the TiC/Cr<sub>2</sub>C<sub>3</sub> additions were dissolved into the molten pool and decomposed into Ti, Cr, and C. The introduction of additional carbon in the melt drastically consumed the Nb available for Laves phase. The tensile tests show that TiC addition to 718Plus alloy contributed to an increased tensile strength of about 120 MPa due to the reduced amount of Laves phase and the reinforced effect of carbides. The fracture behaviour of carbides was explained in detail. The critical shear stress for blocky carbides to crack is higher than that required for rod-like ones, suggesting that TiC additions were desirable for better ductility compared with Cr<sub>2</sub>C<sub>3</sub> additions.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"217 \",\"pages\":\"Article 114415\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044580324007964\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324007964","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Laves phase control and tensile properties optimization of DED-arc repaired 718Plus components through the addition of TiC and Cr2C3
Directed energy deposition-arc (DED-arc) additive manufacturing technology was used to repair the damaged 718Plus components. This work shows that TiC/Cr2C3 addition to 718Plus alloy is an effective way to suppress the formation of the unfavorable Laves phase. TiC additions to 718Plus alloy can alleviate the elemental segregation, refine the dendritic structure and promote the formation of blocky TiC-NbC core-shell carbides and NbC carbides, while Cr2C3 additions enable the precipitation of rod-like NbC carbides. During the deposition process, the TiC/Cr2C3 additions were dissolved into the molten pool and decomposed into Ti, Cr, and C. The introduction of additional carbon in the melt drastically consumed the Nb available for Laves phase. The tensile tests show that TiC addition to 718Plus alloy contributed to an increased tensile strength of about 120 MPa due to the reduced amount of Laves phase and the reinforced effect of carbides. The fracture behaviour of carbides was explained in detail. The critical shear stress for blocky carbides to crack is higher than that required for rod-like ones, suggesting that TiC additions were desirable for better ductility compared with Cr2C3 additions.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.