Yue Yao , Hanqi Qian , Dan Qi , Jinrui Bai , Chao Liu
{"title":"可回收碳纤维增强热固性树脂复合材料成分-结构-性能相关性的新见解","authors":"Yue Yao , Hanqi Qian , Dan Qi , Jinrui Bai , Chao Liu","doi":"10.1016/j.polymdegradstab.2024.111023","DOIUrl":null,"url":null,"abstract":"<div><div>As widely used lightweight and high-strength materials, the sustainable development of thermosetting composites is hampered by their limited recyclability. Developing simple methods for the efficient and upgraded recycling is desirable but challenging. Herein, carbon fiber reinforced degradable thermosetting resin composites were prepared, and the effects of resin degradation process and its derivatives on the sustainable recycling of carbon fiber were studied. Through the tunable departure and re-adsorption of degradation derivatives in cleaning post-treatment, recycled carbon fibers achieved not only non-destructive recovery but also simultaneously improvements in tensile strength from 3.0 GPa to 3.7 GPa and surface energy from 47.2 mN/m to 66.7 mN/m. The adhered derivatives, rich in -NH- and oxygen-containing groups, exhibited good interactions with the fiber surface and epoxy resin. Benefiting from this, the inter laminar shear strength of recycled carbon fibers reinforced epoxy composite effectively improved 24.3 %. In this work, directly reusing resin degradation products for the recycling of reinforced fibers was proposed and the key role of the composition and distribution of degradation products in recycling properties was revealed. The strategy of integrating characteristics of components to enhance material recyclability is expected to have widespread applicability, promoting the sustainable transition for thermosetting composites.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111023"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel insights into the correlation composition-structure-property of recyclable carbon fiber reinforced thermosetting resin composites\",\"authors\":\"Yue Yao , Hanqi Qian , Dan Qi , Jinrui Bai , Chao Liu\",\"doi\":\"10.1016/j.polymdegradstab.2024.111023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As widely used lightweight and high-strength materials, the sustainable development of thermosetting composites is hampered by their limited recyclability. Developing simple methods for the efficient and upgraded recycling is desirable but challenging. Herein, carbon fiber reinforced degradable thermosetting resin composites were prepared, and the effects of resin degradation process and its derivatives on the sustainable recycling of carbon fiber were studied. Through the tunable departure and re-adsorption of degradation derivatives in cleaning post-treatment, recycled carbon fibers achieved not only non-destructive recovery but also simultaneously improvements in tensile strength from 3.0 GPa to 3.7 GPa and surface energy from 47.2 mN/m to 66.7 mN/m. The adhered derivatives, rich in -NH- and oxygen-containing groups, exhibited good interactions with the fiber surface and epoxy resin. Benefiting from this, the inter laminar shear strength of recycled carbon fibers reinforced epoxy composite effectively improved 24.3 %. In this work, directly reusing resin degradation products for the recycling of reinforced fibers was proposed and the key role of the composition and distribution of degradation products in recycling properties was revealed. The strategy of integrating characteristics of components to enhance material recyclability is expected to have widespread applicability, promoting the sustainable transition for thermosetting composites.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"230 \",\"pages\":\"Article 111023\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003677\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003677","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Novel insights into the correlation composition-structure-property of recyclable carbon fiber reinforced thermosetting resin composites
As widely used lightweight and high-strength materials, the sustainable development of thermosetting composites is hampered by their limited recyclability. Developing simple methods for the efficient and upgraded recycling is desirable but challenging. Herein, carbon fiber reinforced degradable thermosetting resin composites were prepared, and the effects of resin degradation process and its derivatives on the sustainable recycling of carbon fiber were studied. Through the tunable departure and re-adsorption of degradation derivatives in cleaning post-treatment, recycled carbon fibers achieved not only non-destructive recovery but also simultaneously improvements in tensile strength from 3.0 GPa to 3.7 GPa and surface energy from 47.2 mN/m to 66.7 mN/m. The adhered derivatives, rich in -NH- and oxygen-containing groups, exhibited good interactions with the fiber surface and epoxy resin. Benefiting from this, the inter laminar shear strength of recycled carbon fibers reinforced epoxy composite effectively improved 24.3 %. In this work, directly reusing resin degradation products for the recycling of reinforced fibers was proposed and the key role of the composition and distribution of degradation products in recycling properties was revealed. The strategy of integrating characteristics of components to enhance material recyclability is expected to have widespread applicability, promoting the sustainable transition for thermosetting composites.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.