{"title":"微波两相流体的非线性动力学:多重精确解","authors":"Waqar Khan Usafzai , Emad H. Aly , Ioan Pop","doi":"10.1016/j.cjph.2024.09.034","DOIUrl":null,"url":null,"abstract":"<div><div>Dual and triple solutions induced by a flexible planar surface for a micropolar two-phase fluid model are studied. The two-phase behavior in the micropolar fluid model occurs due to phase transitions between the fluid phases, influenced by interfacial stresses and heat transfer. The physical implications of these transitions are significant in understanding flow behavior under different mechanical and thermal conditions. This study examines the critical parameters and conditions that lead to these phase transitions, resulting in dual or triple solutions in the flow dynamics. The flow and thermal fields are exact solutions of the steady, two-dimensional two-phase micropolar fluid equations in the form of similarity solution. It is shown that dual and triple exact solutions exist for a highly nonlinear system. Triple solutions exist for the skin friction and temperature gradient identified by the critical numbers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>.</mo></mrow></math></span> It is noted that for sufficiently small values of stretching strength parameter the dual branches for two of the triple solutions exist only in the regions <span><math><mrow><mi>μ</mi><mo>≥</mo><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo>,</mo></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>≤</mo><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo>=</mo><mo>−</mo><mn>5</mn><mo>.</mo><mn>23</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mo>=</mo><mo>−</mo><mn>7</mn><mo>.</mo><mn>72</mn><mo>.</mo></mrow></math></span> Numerical results are also provided, validating the model and offering insights into its accuracy and behavior of the model.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dynamics of micropolar two-phase fluids: Multiple exact solutions\",\"authors\":\"Waqar Khan Usafzai , Emad H. Aly , Ioan Pop\",\"doi\":\"10.1016/j.cjph.2024.09.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dual and triple solutions induced by a flexible planar surface for a micropolar two-phase fluid model are studied. The two-phase behavior in the micropolar fluid model occurs due to phase transitions between the fluid phases, influenced by interfacial stresses and heat transfer. The physical implications of these transitions are significant in understanding flow behavior under different mechanical and thermal conditions. This study examines the critical parameters and conditions that lead to these phase transitions, resulting in dual or triple solutions in the flow dynamics. The flow and thermal fields are exact solutions of the steady, two-dimensional two-phase micropolar fluid equations in the form of similarity solution. It is shown that dual and triple exact solutions exist for a highly nonlinear system. Triple solutions exist for the skin friction and temperature gradient identified by the critical numbers <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>.</mo></mrow></math></span> It is noted that for sufficiently small values of stretching strength parameter the dual branches for two of the triple solutions exist only in the regions <span><math><mrow><mi>μ</mi><mo>≥</mo><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo>,</mo></mrow></math></span> and <span><math><mrow><mi>μ</mi><mo>≤</mo><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo>=</mo><mo>−</mo><mn>5</mn><mo>.</mo><mn>23</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><msub><mrow><mi>c</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mo>=</mo><mo>−</mo><mn>7</mn><mo>.</mo><mn>72</mn><mo>.</mo></mrow></math></span> Numerical results are also provided, validating the model and offering insights into its accuracy and behavior of the model.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324003794\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003794","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
研究了微波两相流体模型的柔性平面所诱发的双解和三解。受界面应力和热传导的影响,流体相之间会发生相变,从而导致微极性流体模型中的两相行为。这些转变的物理意义对于理解不同机械和热条件下的流动行为非常重要。本研究探讨了导致这些相变的关键参数和条件,这些参数和条件导致了流动动力学中的双重或三重解。流场和热场是稳定的二维两相微极流体方程以相似解形式的精确解。研究表明,高度非线性系统存在二重和三重精确解。对于临界数 ac 和 μc 所确定的皮肤摩擦和温度梯度,存在三重解。值得注意的是,对于足够小的拉伸强度参数值,三重解中的两个二重分支只存在于μ≥μc3和μ≤μc4区域,其中μc3=-5.23和μc4=-7.72。此外,还提供了数值结果,验证了模型,并对模型的准确性和行为提出了见解。
Nonlinear dynamics of micropolar two-phase fluids: Multiple exact solutions
Dual and triple solutions induced by a flexible planar surface for a micropolar two-phase fluid model are studied. The two-phase behavior in the micropolar fluid model occurs due to phase transitions between the fluid phases, influenced by interfacial stresses and heat transfer. The physical implications of these transitions are significant in understanding flow behavior under different mechanical and thermal conditions. This study examines the critical parameters and conditions that lead to these phase transitions, resulting in dual or triple solutions in the flow dynamics. The flow and thermal fields are exact solutions of the steady, two-dimensional two-phase micropolar fluid equations in the form of similarity solution. It is shown that dual and triple exact solutions exist for a highly nonlinear system. Triple solutions exist for the skin friction and temperature gradient identified by the critical numbers and It is noted that for sufficiently small values of stretching strength parameter the dual branches for two of the triple solutions exist only in the regions and where and Numerical results are also provided, validating the model and offering insights into its accuracy and behavior of the model.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.