Hui Li , Jie Li , Chenhui Zhao , Chenglong Zheng , Hang Xu , Wenhui Xu , Qi Tan , Chunyu Song , Yun Shen , Jianquan Yao
{"title":"利用全硅四分之一波板产生聚焦涡流光束的元光学技术","authors":"Hui Li , Jie Li , Chenhui Zhao , Chenglong Zheng , Hang Xu , Wenhui Xu , Qi Tan , Chunyu Song , Yun Shen , Jianquan Yao","doi":"10.1016/j.cjph.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>The Poynting vector associated with the focused vortex beam (FVB) that carries orbital angular momentum (OAM) is oriented in a twisted manner relative to the principal axis of propagation. This characteristic has significant applications in advanced fields, including high-dimensional information processing, high-resolution imaging, and particle manipulation. Currently, complex optical systems that operate on alignment principles for generating FVBs have been miniaturized by metasurfaces, resulting in the achievement of polarization-dependent vectorized behavior. Nevertheless, generating and manipulating FVBs that carry OAM in the terahertz (THz) range remains a significant challenge. This difficulty arises particularly when utilizing quarter-wave plates (QWPs) that serve both polarization conversion and polarization filtering functions. Here, we experimentally demonstrate a planar all-dielectric array capable of generating FVBs with high power density within a single-handed circularly polarized channel. Engineered QWP meta-atoms are utilized as candidates for the efficient generation of the desired FVB through the application of dynamic phase gradients. A series of samples were fabricated to assess the effectiveness of this design strategy in converting an incident linearly polarized THz beam into arbitrary single-handed circularly polarized FVBs. Leveraging the high degree of freedom inherent in polarization multiplexing coding, the proposed QWP metasurface can generate FVBs exhibiting topological charge evolution along the longitudinal direction. This capability further underscores its robust polarization modulation proficiency. This work presents a generalized framework for the polarization-dependent generation of ultracompact structural optical fields, which may have potential applications in highly integrated THz communication systems.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"92 ","pages":"Pages 651-663"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-optics empowered by all-silicon quarter-wave plates for generating focused vortex beams\",\"authors\":\"Hui Li , Jie Li , Chenhui Zhao , Chenglong Zheng , Hang Xu , Wenhui Xu , Qi Tan , Chunyu Song , Yun Shen , Jianquan Yao\",\"doi\":\"10.1016/j.cjph.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Poynting vector associated with the focused vortex beam (FVB) that carries orbital angular momentum (OAM) is oriented in a twisted manner relative to the principal axis of propagation. This characteristic has significant applications in advanced fields, including high-dimensional information processing, high-resolution imaging, and particle manipulation. Currently, complex optical systems that operate on alignment principles for generating FVBs have been miniaturized by metasurfaces, resulting in the achievement of polarization-dependent vectorized behavior. Nevertheless, generating and manipulating FVBs that carry OAM in the terahertz (THz) range remains a significant challenge. This difficulty arises particularly when utilizing quarter-wave plates (QWPs) that serve both polarization conversion and polarization filtering functions. Here, we experimentally demonstrate a planar all-dielectric array capable of generating FVBs with high power density within a single-handed circularly polarized channel. Engineered QWP meta-atoms are utilized as candidates for the efficient generation of the desired FVB through the application of dynamic phase gradients. A series of samples were fabricated to assess the effectiveness of this design strategy in converting an incident linearly polarized THz beam into arbitrary single-handed circularly polarized FVBs. Leveraging the high degree of freedom inherent in polarization multiplexing coding, the proposed QWP metasurface can generate FVBs exhibiting topological charge evolution along the longitudinal direction. This capability further underscores its robust polarization modulation proficiency. This work presents a generalized framework for the polarization-dependent generation of ultracompact structural optical fields, which may have potential applications in highly integrated THz communication systems.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"92 \",\"pages\":\"Pages 651-663\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324003952\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003952","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Meta-optics empowered by all-silicon quarter-wave plates for generating focused vortex beams
The Poynting vector associated with the focused vortex beam (FVB) that carries orbital angular momentum (OAM) is oriented in a twisted manner relative to the principal axis of propagation. This characteristic has significant applications in advanced fields, including high-dimensional information processing, high-resolution imaging, and particle manipulation. Currently, complex optical systems that operate on alignment principles for generating FVBs have been miniaturized by metasurfaces, resulting in the achievement of polarization-dependent vectorized behavior. Nevertheless, generating and manipulating FVBs that carry OAM in the terahertz (THz) range remains a significant challenge. This difficulty arises particularly when utilizing quarter-wave plates (QWPs) that serve both polarization conversion and polarization filtering functions. Here, we experimentally demonstrate a planar all-dielectric array capable of generating FVBs with high power density within a single-handed circularly polarized channel. Engineered QWP meta-atoms are utilized as candidates for the efficient generation of the desired FVB through the application of dynamic phase gradients. A series of samples were fabricated to assess the effectiveness of this design strategy in converting an incident linearly polarized THz beam into arbitrary single-handed circularly polarized FVBs. Leveraging the high degree of freedom inherent in polarization multiplexing coding, the proposed QWP metasurface can generate FVBs exhibiting topological charge evolution along the longitudinal direction. This capability further underscores its robust polarization modulation proficiency. This work presents a generalized framework for the polarization-dependent generation of ultracompact structural optical fields, which may have potential applications in highly integrated THz communication systems.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.