Akshyn Biman-Telang , Philip Koshy , Daniel Schulze Brock , Ugur Küpper , Andreas Klink , Tim Herrig , Thomas Bergs
{"title":"重新思考线材放电加工:用工程粗线提高性能","authors":"Akshyn Biman-Telang , Philip Koshy , Daniel Schulze Brock , Ugur Küpper , Andreas Klink , Tim Herrig , Thomas Bergs","doi":"10.1016/j.precisioneng.2024.09.022","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread application of wire electrical discharge machining (WEDM) continues to be impeded by its low cutting rate, which in large part stems from constraints related to wire failure. This research therefore explored the implications of utilizing wires thicker than the industry-standard 0.25 mm diameter wire. Given that modern WEDM machines are limited to a maximum wire diameter of only 0.4 mm, a combination of numerical and experimental approaches was adopted to compute the optimal wire diameter in consideration of the competing influences of higher machining power and larger kerf width associated with thicker wires, and to project the corresponding cutting rates. The research offers new insights into phenomena underlying wire break, and underscores the significant prospects towards enhancing process performance by re-examining WEDM in terms of thick wires.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 383-389"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking wire electrical discharge machining: A case for engineering thick wires to enhance performance\",\"authors\":\"Akshyn Biman-Telang , Philip Koshy , Daniel Schulze Brock , Ugur Küpper , Andreas Klink , Tim Herrig , Thomas Bergs\",\"doi\":\"10.1016/j.precisioneng.2024.09.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The widespread application of wire electrical discharge machining (WEDM) continues to be impeded by its low cutting rate, which in large part stems from constraints related to wire failure. This research therefore explored the implications of utilizing wires thicker than the industry-standard 0.25 mm diameter wire. Given that modern WEDM machines are limited to a maximum wire diameter of only 0.4 mm, a combination of numerical and experimental approaches was adopted to compute the optimal wire diameter in consideration of the competing influences of higher machining power and larger kerf width associated with thicker wires, and to project the corresponding cutting rates. The research offers new insights into phenomena underlying wire break, and underscores the significant prospects towards enhancing process performance by re-examining WEDM in terms of thick wires.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 383-389\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002228\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002228","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Rethinking wire electrical discharge machining: A case for engineering thick wires to enhance performance
The widespread application of wire electrical discharge machining (WEDM) continues to be impeded by its low cutting rate, which in large part stems from constraints related to wire failure. This research therefore explored the implications of utilizing wires thicker than the industry-standard 0.25 mm diameter wire. Given that modern WEDM machines are limited to a maximum wire diameter of only 0.4 mm, a combination of numerical and experimental approaches was adopted to compute the optimal wire diameter in consideration of the competing influences of higher machining power and larger kerf width associated with thicker wires, and to project the corresponding cutting rates. The research offers new insights into phenomena underlying wire break, and underscores the significant prospects towards enhancing process performance by re-examining WEDM in terms of thick wires.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.