{"title":"单向复合材料中与长宽比相关的体积电阻率:从电传导行为中获得的启示","authors":"Gen Li, Tianwei Wu, Junjie Zhang, Frew Asamnewu Fikru, Baozhong Sun, Bohong Gu","doi":"10.1016/j.compscitech.2024.110887","DOIUrl":null,"url":null,"abstract":"<div><div>The electrical properties of carbon fibers serve as the foundation for the multifunctional applications of carbon fiber-reinforced composite structures. In scenarios that exploit the electrical characteristics of materials, accurate estimation of electrical resistivity stands as a critical factor. This study endeavors to elucidate the electrical conduction behaviors in unidirectional composites with different fiber orientation angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) and aspect ratios, thereby deriving the volume resistivity within an arbitrary Cartesian coordinate system. Employing thermal infrared imaging technology and finite element analysis, we identified distinctive electrical conduction behaviors associated with aspect ratios in carbon fiber composite plates. Notably, a critical aspect ratio exists wherein the diagonal yarn is the only conductive path between two electrodes. Below this critical threshold, no direct conductive path exists, and current flows through the shortest distance between parallel yarns. Conversely, beyond the critical aspect ratio value, multiple yarns form conductive paths between the two electrodes. Based on the electrical conduction behavior of unidirectional composites under different angles and aspect ratios, the volume resistivity with finite boundaries was derived and examined under an arbitrary Cartesian coordinate basis.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110887"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aspect ratio-dependent volume resistivity in unidirectional composites: Insights from electrical conduction behavior\",\"authors\":\"Gen Li, Tianwei Wu, Junjie Zhang, Frew Asamnewu Fikru, Baozhong Sun, Bohong Gu\",\"doi\":\"10.1016/j.compscitech.2024.110887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The electrical properties of carbon fibers serve as the foundation for the multifunctional applications of carbon fiber-reinforced composite structures. In scenarios that exploit the electrical characteristics of materials, accurate estimation of electrical resistivity stands as a critical factor. This study endeavors to elucidate the electrical conduction behaviors in unidirectional composites with different fiber orientation angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) and aspect ratios, thereby deriving the volume resistivity within an arbitrary Cartesian coordinate system. Employing thermal infrared imaging technology and finite element analysis, we identified distinctive electrical conduction behaviors associated with aspect ratios in carbon fiber composite plates. Notably, a critical aspect ratio exists wherein the diagonal yarn is the only conductive path between two electrodes. Below this critical threshold, no direct conductive path exists, and current flows through the shortest distance between parallel yarns. Conversely, beyond the critical aspect ratio value, multiple yarns form conductive paths between the two electrodes. Based on the electrical conduction behavior of unidirectional composites under different angles and aspect ratios, the volume resistivity with finite boundaries was derived and examined under an arbitrary Cartesian coordinate basis.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"258 \",\"pages\":\"Article 110887\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004573\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004573","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Aspect ratio-dependent volume resistivity in unidirectional composites: Insights from electrical conduction behavior
The electrical properties of carbon fibers serve as the foundation for the multifunctional applications of carbon fiber-reinforced composite structures. In scenarios that exploit the electrical characteristics of materials, accurate estimation of electrical resistivity stands as a critical factor. This study endeavors to elucidate the electrical conduction behaviors in unidirectional composites with different fiber orientation angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°) and aspect ratios, thereby deriving the volume resistivity within an arbitrary Cartesian coordinate system. Employing thermal infrared imaging technology and finite element analysis, we identified distinctive electrical conduction behaviors associated with aspect ratios in carbon fiber composite plates. Notably, a critical aspect ratio exists wherein the diagonal yarn is the only conductive path between two electrodes. Below this critical threshold, no direct conductive path exists, and current flows through the shortest distance between parallel yarns. Conversely, beyond the critical aspect ratio value, multiple yarns form conductive paths between the two electrodes. Based on the electrical conduction behavior of unidirectional composites under different angles and aspect ratios, the volume resistivity with finite boundaries was derived and examined under an arbitrary Cartesian coordinate basis.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.