{"title":"金属单晶冲击压缩相变中的多种动力学途径","authors":"Simin An, Xingyu Gao, Haifeng Liu, Haifeng Song","doi":"10.1016/j.mtla.2024.102245","DOIUrl":null,"url":null,"abstract":"<div><div>Substantial gaps in solid-solid phase boundaries under hydrostatic and uniaxial compression have recently garnered great attention, though the underlying physics remains unclear. In this study, through molecular dynamics simulations of shock-compressed fcc Cu single crystals, we report pronounced orientation-dependent fcc-to-bcc phase transition pressures following the trend [100] < [110] < [111] ≈ thermodynamic phase boundary. We uncover a fundamental crystallographic law that explains these phase boundary gaps, rooted in the classical orientational relationship of martensitic transformations: the degree of alignment between loading directions and the easiest atomic moving path plays a critical role in determining phase transition pathways. The complex, orientation-dependent phase transition pathways and the observed temperature equilibrium efficiency ranking [100] > [110] > [111] further support the validity of this crystallographic law. This law is broadly applicable to fcc crystals, indicating that phase composition can be controlled by the method of compression, providing a new framework for selective polymorph formation.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102245"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse kinetic pathways in shock-compressed phase transitions of a metallic single crystal\",\"authors\":\"Simin An, Xingyu Gao, Haifeng Liu, Haifeng Song\",\"doi\":\"10.1016/j.mtla.2024.102245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Substantial gaps in solid-solid phase boundaries under hydrostatic and uniaxial compression have recently garnered great attention, though the underlying physics remains unclear. In this study, through molecular dynamics simulations of shock-compressed fcc Cu single crystals, we report pronounced orientation-dependent fcc-to-bcc phase transition pressures following the trend [100] < [110] < [111] ≈ thermodynamic phase boundary. We uncover a fundamental crystallographic law that explains these phase boundary gaps, rooted in the classical orientational relationship of martensitic transformations: the degree of alignment between loading directions and the easiest atomic moving path plays a critical role in determining phase transition pathways. The complex, orientation-dependent phase transition pathways and the observed temperature equilibrium efficiency ranking [100] > [110] > [111] further support the validity of this crystallographic law. This law is broadly applicable to fcc crystals, indicating that phase composition can be controlled by the method of compression, providing a new framework for selective polymorph formation.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102245\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Diverse kinetic pathways in shock-compressed phase transitions of a metallic single crystal
Substantial gaps in solid-solid phase boundaries under hydrostatic and uniaxial compression have recently garnered great attention, though the underlying physics remains unclear. In this study, through molecular dynamics simulations of shock-compressed fcc Cu single crystals, we report pronounced orientation-dependent fcc-to-bcc phase transition pressures following the trend [100] < [110] < [111] ≈ thermodynamic phase boundary. We uncover a fundamental crystallographic law that explains these phase boundary gaps, rooted in the classical orientational relationship of martensitic transformations: the degree of alignment between loading directions and the easiest atomic moving path plays a critical role in determining phase transition pathways. The complex, orientation-dependent phase transition pathways and the observed temperature equilibrium efficiency ranking [100] > [110] > [111] further support the validity of this crystallographic law. This law is broadly applicable to fcc crystals, indicating that phase composition can be controlled by the method of compression, providing a new framework for selective polymorph formation.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).