锰铝永磁体的严重塑性变形

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"锰铝永磁体的严重塑性变形","authors":"","doi":"10.1016/j.mtla.2024.102251","DOIUrl":null,"url":null,"abstract":"<div><div>Manganese-aluminum permanent magnets are promising candidates to fill the cost and performance gap between lower-performance bonded ferrites and high-performance magnets based on rare-earth elements. This is due to the favorable combination of saturation magnetization and magnetocrystalline anisotropy in the Mn-Al τ phase combined with low raw material cost. However, the τ phase is metastable and prone to decomposition at high temperatures, making processing by conventional milling and sintering difficult. Severe plastic deformation (SPD) is an alternative processing route to control the microstructure of a material by applying very high amounts of strain. In this study, equal-channel angular extrusion (ECAE) and high-speed high-pressure torsion (HS-HPT) were both tested as SPD processing routes. ECAE improved magnetic energy product, (BH)<sub>max</sub>, by 220 % by refining the grain size and imparting a high density of dislocations. HS-HPT enabled a rapid phase transformation from the high-temperature ε phase to the τ phase but lowered H<sub>ci</sub>, making it better suited to soft magnet processing.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Severe plastic deformation of Mn-Al permanent magnets\",\"authors\":\"\",\"doi\":\"10.1016/j.mtla.2024.102251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Manganese-aluminum permanent magnets are promising candidates to fill the cost and performance gap between lower-performance bonded ferrites and high-performance magnets based on rare-earth elements. This is due to the favorable combination of saturation magnetization and magnetocrystalline anisotropy in the Mn-Al τ phase combined with low raw material cost. However, the τ phase is metastable and prone to decomposition at high temperatures, making processing by conventional milling and sintering difficult. Severe plastic deformation (SPD) is an alternative processing route to control the microstructure of a material by applying very high amounts of strain. In this study, equal-channel angular extrusion (ECAE) and high-speed high-pressure torsion (HS-HPT) were both tested as SPD processing routes. ECAE improved magnetic energy product, (BH)<sub>max</sub>, by 220 % by refining the grain size and imparting a high density of dislocations. HS-HPT enabled a rapid phase transformation from the high-temperature ε phase to the τ phase but lowered H<sub>ci</sub>, making it better suited to soft magnet processing.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锰铝永磁体有望填补低性能粘结铁氧体与基于稀土元素的高性能磁体之间的成本和性能差距。这是因为锰铝τ相具有饱和磁化和磁晶各向异性的有利组合,而且原材料成本低。然而,τ 相在高温下易变且易分解,因此难以采用传统的铣削和烧结工艺进行加工。严重塑性变形(SPD)是通过施加极高的应变来控制材料微观结构的另一种加工方法。在这项研究中,等通道角挤压(ECAE)和高速高压扭转(HS-HPT)都作为 SPD 加工途径进行了测试。ECAE 通过细化晶粒尺寸和赋予高密度位错,将磁能积 (BH)max 提高了 220%。HS-HPT 实现了从高温 ε 相到 τ 相的快速相变,但降低了 Hci,因此更适合软磁加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Severe plastic deformation of Mn-Al permanent magnets

Severe plastic deformation of Mn-Al permanent magnets
Manganese-aluminum permanent magnets are promising candidates to fill the cost and performance gap between lower-performance bonded ferrites and high-performance magnets based on rare-earth elements. This is due to the favorable combination of saturation magnetization and magnetocrystalline anisotropy in the Mn-Al τ phase combined with low raw material cost. However, the τ phase is metastable and prone to decomposition at high temperatures, making processing by conventional milling and sintering difficult. Severe plastic deformation (SPD) is an alternative processing route to control the microstructure of a material by applying very high amounts of strain. In this study, equal-channel angular extrusion (ECAE) and high-speed high-pressure torsion (HS-HPT) were both tested as SPD processing routes. ECAE improved magnetic energy product, (BH)max, by 220 % by refining the grain size and imparting a high density of dislocations. HS-HPT enabled a rapid phase transformation from the high-temperature ε phase to the τ phase but lowered Hci, making it better suited to soft magnet processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信