Jie Xiao, Guodong Fang, Bing Wang, Changqing Hong, Songhe Meng
{"title":"硅改性酚醛聚合物热力学特性的分子动力学模拟","authors":"Jie Xiao, Guodong Fang, Bing Wang, Changqing Hong, Songhe Meng","doi":"10.1016/j.compscitech.2024.110878","DOIUrl":null,"url":null,"abstract":"<div><div>The silicone-phenolic multicomponent polymers are typically employed as the matrix of fiber-reinforced nanocomposites developed for reentry vehicles due to their excellent thermal and mechanical properties. The thermomechanical properties of the silicone-phenolic multicomponent polymer system, which are greatly related to the processing and microstructures, were studied using molecular dynamics (MD) simulations combined with experiments. A multistep dynamic polymerization approach was utilized to form the crosslinked polymer model, which was also validated in terms of both microstructures and properties. The thermomechanical properties of the crosslinked polymer system were established as a function of crosslinking degree, component ratio, temperature, strain rate, and cooling rate, and the influence mechanisms of the processing parameters were revealed. The crosslinking degree can greatly influence the glass transition temperature and volumetric coefficient of thermal expansion, which is attributed to the constrained chain mobility. The crosslinking degree and the component ratio have a significant effect on the morphologies and vibrational density of states of the polymer system, respectively, which in turn affects the thermal conductivity. The failure mode during uniaxial tensile was investigated in terms of the atomic energy distribution through MD simulations. The elastic and plastic deformation stages are dominated by intermolecular non-bonding interactions, but less contributed by the bonding interactions. This work can guide the design of polymeric nanocomposites by establishing the relationship of processing-microstructure-thermomechanical properties.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110878"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular dynamics simulations of thermomechanical properties of silicone-modified phenolic polymer\",\"authors\":\"Jie Xiao, Guodong Fang, Bing Wang, Changqing Hong, Songhe Meng\",\"doi\":\"10.1016/j.compscitech.2024.110878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The silicone-phenolic multicomponent polymers are typically employed as the matrix of fiber-reinforced nanocomposites developed for reentry vehicles due to their excellent thermal and mechanical properties. The thermomechanical properties of the silicone-phenolic multicomponent polymer system, which are greatly related to the processing and microstructures, were studied using molecular dynamics (MD) simulations combined with experiments. A multistep dynamic polymerization approach was utilized to form the crosslinked polymer model, which was also validated in terms of both microstructures and properties. The thermomechanical properties of the crosslinked polymer system were established as a function of crosslinking degree, component ratio, temperature, strain rate, and cooling rate, and the influence mechanisms of the processing parameters were revealed. The crosslinking degree can greatly influence the glass transition temperature and volumetric coefficient of thermal expansion, which is attributed to the constrained chain mobility. The crosslinking degree and the component ratio have a significant effect on the morphologies and vibrational density of states of the polymer system, respectively, which in turn affects the thermal conductivity. The failure mode during uniaxial tensile was investigated in terms of the atomic energy distribution through MD simulations. The elastic and plastic deformation stages are dominated by intermolecular non-bonding interactions, but less contributed by the bonding interactions. This work can guide the design of polymeric nanocomposites by establishing the relationship of processing-microstructure-thermomechanical properties.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"258 \",\"pages\":\"Article 110878\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004482\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004482","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Molecular dynamics simulations of thermomechanical properties of silicone-modified phenolic polymer
The silicone-phenolic multicomponent polymers are typically employed as the matrix of fiber-reinforced nanocomposites developed for reentry vehicles due to their excellent thermal and mechanical properties. The thermomechanical properties of the silicone-phenolic multicomponent polymer system, which are greatly related to the processing and microstructures, were studied using molecular dynamics (MD) simulations combined with experiments. A multistep dynamic polymerization approach was utilized to form the crosslinked polymer model, which was also validated in terms of both microstructures and properties. The thermomechanical properties of the crosslinked polymer system were established as a function of crosslinking degree, component ratio, temperature, strain rate, and cooling rate, and the influence mechanisms of the processing parameters were revealed. The crosslinking degree can greatly influence the glass transition temperature and volumetric coefficient of thermal expansion, which is attributed to the constrained chain mobility. The crosslinking degree and the component ratio have a significant effect on the morphologies and vibrational density of states of the polymer system, respectively, which in turn affects the thermal conductivity. The failure mode during uniaxial tensile was investigated in terms of the atomic energy distribution through MD simulations. The elastic and plastic deformation stages are dominated by intermolecular non-bonding interactions, but less contributed by the bonding interactions. This work can guide the design of polymeric nanocomposites by establishing the relationship of processing-microstructure-thermomechanical properties.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.