George D. Mercer , Bede S. Mickan , Deirdre B. Gleeson , Megan H. Ryan
{"title":"转化生物固体以土壤碳的 \"代价 \"促进黑麦草生长和微生物碳循环","authors":"George D. Mercer , Bede S. Mickan , Deirdre B. Gleeson , Megan H. Ryan","doi":"10.1016/j.soilbio.2024.109603","DOIUrl":null,"url":null,"abstract":"<div><div>Soil carbon supports desirable ecosystem functions for global agricultural productivity and climate resilience objectives. Wastewater biosolids can be transformed into soil amendments that return carbon and nutrients to agricultural systems in stoichiometric ratios that support carbon stabilisation. However, practicable delivery that enhances stable soil carbon and plant yield remains challenging. Soil carbon stability and nutrient availability are mediated partly by microbial community composition and function, which are poorly understood in soils amended with transformed biosolids. We conducted a 56-day study in a temperature-controlled glasshouse, growing perennial ryegrass (<em>Lolium perenne</em>) in pasture soil amended with straw, straw supplemented with nutrients, or transformed biosolids (composted biosolids, dried biosolids or biosolids biochar), all with equal added carbon (3500 kg ha<sup>−1</sup>). Control soils, with and without supplementary nutrients, were also included. Plant dry mass, soil chemical characteristics, and soil carbon fractions were measured at harvest. 16S rRNA sequencing was used to infer the composition and putative function of rhizosphere bacterial communities. Shoot dry mass increased for composted biosolids (236%) and dried biosolids (559%), but total carbon in rhizosphere soil decreased for composted biosolids (16.3%), dried biosolids (13.3%) and biosolids biochar (12.7%) when compared to unamended soils. Fine-fraction carbon in rhizosphere soil decreased for straw with supplementary nutrients (6.8%), dried biosolids (6.3%) and biosolids biochar (4.6%). Rhizosphere bacterial communities clustered by treatment, with populations correlated with fine-fraction carbon distinct from those populations correlated with shoot and root dry mass. Path analysis linked fine-fraction carbon loss with increased putative carbon cycling genes, driven by available nutrients and plant growth. Transformed biosolids can trigger a microbial response that reallocates nutrients from organic matter to plants, disrupting soil carbon-nutrient stoichiometry and facilitating carbon loss. Understanding the carbon cost of this ecosystem service is fundamental when translating benefits of transformed biosolids to end users.</div></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"199 ","pages":"Article 109603"},"PeriodicalIF":9.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformed biosolids promote ryegrass growth and microbial carbon cycling at the ‘cost’ of soil carbon\",\"authors\":\"George D. Mercer , Bede S. Mickan , Deirdre B. Gleeson , Megan H. Ryan\",\"doi\":\"10.1016/j.soilbio.2024.109603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil carbon supports desirable ecosystem functions for global agricultural productivity and climate resilience objectives. Wastewater biosolids can be transformed into soil amendments that return carbon and nutrients to agricultural systems in stoichiometric ratios that support carbon stabilisation. However, practicable delivery that enhances stable soil carbon and plant yield remains challenging. Soil carbon stability and nutrient availability are mediated partly by microbial community composition and function, which are poorly understood in soils amended with transformed biosolids. We conducted a 56-day study in a temperature-controlled glasshouse, growing perennial ryegrass (<em>Lolium perenne</em>) in pasture soil amended with straw, straw supplemented with nutrients, or transformed biosolids (composted biosolids, dried biosolids or biosolids biochar), all with equal added carbon (3500 kg ha<sup>−1</sup>). Control soils, with and without supplementary nutrients, were also included. Plant dry mass, soil chemical characteristics, and soil carbon fractions were measured at harvest. 16S rRNA sequencing was used to infer the composition and putative function of rhizosphere bacterial communities. Shoot dry mass increased for composted biosolids (236%) and dried biosolids (559%), but total carbon in rhizosphere soil decreased for composted biosolids (16.3%), dried biosolids (13.3%) and biosolids biochar (12.7%) when compared to unamended soils. Fine-fraction carbon in rhizosphere soil decreased for straw with supplementary nutrients (6.8%), dried biosolids (6.3%) and biosolids biochar (4.6%). Rhizosphere bacterial communities clustered by treatment, with populations correlated with fine-fraction carbon distinct from those populations correlated with shoot and root dry mass. Path analysis linked fine-fraction carbon loss with increased putative carbon cycling genes, driven by available nutrients and plant growth. Transformed biosolids can trigger a microbial response that reallocates nutrients from organic matter to plants, disrupting soil carbon-nutrient stoichiometry and facilitating carbon loss. Understanding the carbon cost of this ecosystem service is fundamental when translating benefits of transformed biosolids to end users.</div></div>\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":\"199 \",\"pages\":\"Article 109603\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003807172400292X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003807172400292X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Transformed biosolids promote ryegrass growth and microbial carbon cycling at the ‘cost’ of soil carbon
Soil carbon supports desirable ecosystem functions for global agricultural productivity and climate resilience objectives. Wastewater biosolids can be transformed into soil amendments that return carbon and nutrients to agricultural systems in stoichiometric ratios that support carbon stabilisation. However, practicable delivery that enhances stable soil carbon and plant yield remains challenging. Soil carbon stability and nutrient availability are mediated partly by microbial community composition and function, which are poorly understood in soils amended with transformed biosolids. We conducted a 56-day study in a temperature-controlled glasshouse, growing perennial ryegrass (Lolium perenne) in pasture soil amended with straw, straw supplemented with nutrients, or transformed biosolids (composted biosolids, dried biosolids or biosolids biochar), all with equal added carbon (3500 kg ha−1). Control soils, with and without supplementary nutrients, were also included. Plant dry mass, soil chemical characteristics, and soil carbon fractions were measured at harvest. 16S rRNA sequencing was used to infer the composition and putative function of rhizosphere bacterial communities. Shoot dry mass increased for composted biosolids (236%) and dried biosolids (559%), but total carbon in rhizosphere soil decreased for composted biosolids (16.3%), dried biosolids (13.3%) and biosolids biochar (12.7%) when compared to unamended soils. Fine-fraction carbon in rhizosphere soil decreased for straw with supplementary nutrients (6.8%), dried biosolids (6.3%) and biosolids biochar (4.6%). Rhizosphere bacterial communities clustered by treatment, with populations correlated with fine-fraction carbon distinct from those populations correlated with shoot and root dry mass. Path analysis linked fine-fraction carbon loss with increased putative carbon cycling genes, driven by available nutrients and plant growth. Transformed biosolids can trigger a microbial response that reallocates nutrients from organic matter to plants, disrupting soil carbon-nutrient stoichiometry and facilitating carbon loss. Understanding the carbon cost of this ecosystem service is fundamental when translating benefits of transformed biosolids to end users.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.