{"title":"利用全血进行快速诊断人类副银屑病的免疫层析试验及其诊断用途","authors":"Patcharaporn Boonroumkaew , Lakkhana Sadaow , Penchom Janwan , Rutchanee Rodpai , Oranuch Sanpool , Tongjit Thanchomnang , Hiroshi Yamasaki , Pewpan M. Intapan , Wanchai Maleewong","doi":"10.1016/j.fawpar.2024.e00246","DOIUrl":null,"url":null,"abstract":"<div><div>Paragonimiasis is a harmful food-borne zoonosis caused by lung flukes of the genus <em>Paragonimus</em>. The disease is found on most continents, several million people are at risk of infection, and it is a re-emerging disease in developing countries. The gold standard for diagnosis of pulmonary paragonimiasis requires the finding of eggs in sputa and/or fecal samples. In ectopic paragonimiasis cases, eggs are typically not seen, and supportive information is required such as a history of eating freshwater crabs or crayfishes, radiographic findings and immunological tests. Here, we developed a proof of concept based on lateral flow assay, an immunochromatographic test kit, named the paragonimiasis whole-blood test kit, for detection of specific IgG antibody in simulated whole-blood samples (WBSs) using worm excretory-secretory antigens to diagnose human paragonimiasis. The laboratory diagnostic values of this kit were compared with the detected IgG in serum samples. In simulated WBSs, the diagnostic sensitivity and specificity were 97.8 % and 96.1 %, respectively, while for serum samples, these values were 100.0 % and 94.8 %, respectively. The comparative IgG antibody detections whether a result was positive or negative between simulated WBSs and serum samples did not differ significantly with a concordance of 97.8 % in laboratory conditions using a circumscribed set of samples. The tool is fast and easy to use. The next step involves observing and evaluating native whole blood samples and using specific recombinant antigens need to be evaluated for support diagnosis of paragonimiasis caused by <em>P. heterotremus, P. westermani</em> and <em>P. miyazakii</em> at the bedside or at local and remote hospitals with limited facilities. It will also be valuable for epidemiological surveys in Asia where paragonimiasis is endemic.</div></div>","PeriodicalId":37941,"journal":{"name":"Food and Waterborne Parasitology","volume":"37 ","pages":"Article e00246"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An immunochromatographic test using whole blood for rapid diagnosis of human paragonimiasis and its diagnostic usefulness\",\"authors\":\"Patcharaporn Boonroumkaew , Lakkhana Sadaow , Penchom Janwan , Rutchanee Rodpai , Oranuch Sanpool , Tongjit Thanchomnang , Hiroshi Yamasaki , Pewpan M. Intapan , Wanchai Maleewong\",\"doi\":\"10.1016/j.fawpar.2024.e00246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Paragonimiasis is a harmful food-borne zoonosis caused by lung flukes of the genus <em>Paragonimus</em>. The disease is found on most continents, several million people are at risk of infection, and it is a re-emerging disease in developing countries. The gold standard for diagnosis of pulmonary paragonimiasis requires the finding of eggs in sputa and/or fecal samples. In ectopic paragonimiasis cases, eggs are typically not seen, and supportive information is required such as a history of eating freshwater crabs or crayfishes, radiographic findings and immunological tests. Here, we developed a proof of concept based on lateral flow assay, an immunochromatographic test kit, named the paragonimiasis whole-blood test kit, for detection of specific IgG antibody in simulated whole-blood samples (WBSs) using worm excretory-secretory antigens to diagnose human paragonimiasis. The laboratory diagnostic values of this kit were compared with the detected IgG in serum samples. In simulated WBSs, the diagnostic sensitivity and specificity were 97.8 % and 96.1 %, respectively, while for serum samples, these values were 100.0 % and 94.8 %, respectively. The comparative IgG antibody detections whether a result was positive or negative between simulated WBSs and serum samples did not differ significantly with a concordance of 97.8 % in laboratory conditions using a circumscribed set of samples. The tool is fast and easy to use. The next step involves observing and evaluating native whole blood samples and using specific recombinant antigens need to be evaluated for support diagnosis of paragonimiasis caused by <em>P. heterotremus, P. westermani</em> and <em>P. miyazakii</em> at the bedside or at local and remote hospitals with limited facilities. It will also be valuable for epidemiological surveys in Asia where paragonimiasis is endemic.</div></div>\",\"PeriodicalId\":37941,\"journal\":{\"name\":\"Food and Waterborne Parasitology\",\"volume\":\"37 \",\"pages\":\"Article e00246\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Waterborne Parasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405676624000283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Waterborne Parasitology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405676624000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
An immunochromatographic test using whole blood for rapid diagnosis of human paragonimiasis and its diagnostic usefulness
Paragonimiasis is a harmful food-borne zoonosis caused by lung flukes of the genus Paragonimus. The disease is found on most continents, several million people are at risk of infection, and it is a re-emerging disease in developing countries. The gold standard for diagnosis of pulmonary paragonimiasis requires the finding of eggs in sputa and/or fecal samples. In ectopic paragonimiasis cases, eggs are typically not seen, and supportive information is required such as a history of eating freshwater crabs or crayfishes, radiographic findings and immunological tests. Here, we developed a proof of concept based on lateral flow assay, an immunochromatographic test kit, named the paragonimiasis whole-blood test kit, for detection of specific IgG antibody in simulated whole-blood samples (WBSs) using worm excretory-secretory antigens to diagnose human paragonimiasis. The laboratory diagnostic values of this kit were compared with the detected IgG in serum samples. In simulated WBSs, the diagnostic sensitivity and specificity were 97.8 % and 96.1 %, respectively, while for serum samples, these values were 100.0 % and 94.8 %, respectively. The comparative IgG antibody detections whether a result was positive or negative between simulated WBSs and serum samples did not differ significantly with a concordance of 97.8 % in laboratory conditions using a circumscribed set of samples. The tool is fast and easy to use. The next step involves observing and evaluating native whole blood samples and using specific recombinant antigens need to be evaluated for support diagnosis of paragonimiasis caused by P. heterotremus, P. westermani and P. miyazakii at the bedside or at local and remote hospitals with limited facilities. It will also be valuable for epidemiological surveys in Asia where paragonimiasis is endemic.
期刊介绍:
Food and Waterborne Parasitology publishes high quality papers containing original research findings, investigative reports, and scientific proceedings on parasites which are transmitted to humans via the consumption of food or water. The relevant parasites include protozoa, nematodes, cestodes and trematodes which are transmitted by food or water and capable of infecting humans. Pertinent food includes products of animal or plant origin which are domestic or wild, and consumed by humans. Animals and plants from both terrestrial and aquatic sources are included, as well as studies related to potable and other types of water which serve to harbor, perpetuate or disseminate food and waterborne parasites. Studies dealing with prevalence, transmission, epidemiology, risk assessment and mitigation, including control measures and test methodologies for parasites in food and water are of particular interest. Evidence of the emergence of such parasites and interactions among domestic animals, wildlife and humans are of interest. The impact of parasites on the health and welfare of humans is viewed as very important and within scope of the journal. Manuscripts with scientifically generated information on associations between food and waterborne parasitic diseases and lifestyle, culture and economies are also welcome. Studies involving animal experiments must meet the International Guiding Principles for Biomedical Research Involving Animals as issued by the Council for International Organizations of Medical Sciences.