{"title":"具有临界指数增长的广义切尔诺-西蒙斯-薛定谔系统正解的存在性和集中性","authors":"Liejun Shen , Marco Squassina","doi":"10.1016/j.jmaa.2024.128926","DOIUrl":null,"url":null,"abstract":"<div><div>We are concerned with a class of generalized Chern-Simons-Schrödinger systems<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>+</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>u</mi><mo>+</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></munderover><msubsup><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mo>∂</mo></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> denotes a sufficiently large parameter, <span><math><mi>V</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> admits a potential well <span><math><mi>Ω</mi><mo>≜</mo><mtext>int</mtext><msup><mrow><mi>V</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo></math></span> and the nonlinearity <em>f</em> fulfills the critical exponential growth in the Trudinger-Moser sense at infinity. Under some suitable assumptions on <em>V</em> and <em>f</em>, based on variational method together with some new technical analysis, we are able to get the existence of positive solutions for some large <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span>, and the asymptotic behavior of the obtained solutions is also investigated when <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and concentration of positive solutions to generalized Chern-Simons-Schrödinger system with critical exponential growth\",\"authors\":\"Liejun Shen , Marco Squassina\",\"doi\":\"10.1016/j.jmaa.2024.128926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We are concerned with a class of generalized Chern-Simons-Schrödinger systems<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>u</mi><mo>+</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mi>u</mi><mo>+</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></munderover><msubsup><mrow><mi>A</mi></mrow><mrow><mi>j</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mo>∂</mo></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mo>∂</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>A</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> denotes a sufficiently large parameter, <span><math><mi>V</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><mi>R</mi></math></span> admits a potential well <span><math><mi>Ω</mi><mo>≜</mo><mtext>int</mtext><msup><mrow><mi>V</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo></math></span> and the nonlinearity <em>f</em> fulfills the critical exponential growth in the Trudinger-Moser sense at infinity. Under some suitable assumptions on <em>V</em> and <em>f</em>, based on variational method together with some new technical analysis, we are able to get the existence of positive solutions for some large <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span>, and the asymptotic behavior of the obtained solutions is also investigated when <span><math><mi>λ</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span>.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008485\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008485","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们关注一类广义的切尔恩-西蒙斯-薛定谔系统{-Δu+λV(x)u+A0u+∑j=12Aj2u=f(u),∂1A2-∂2A1=-12|u|2,∂1A1+∂2A2=0,∂1A0=A2|u|2,∂2A0=-A1|u|2,其中λ>;0 表示一个足够大的参数,V:R2→R 中存在一个势阱 Ω≜intV-1(0),非线性 f 在无穷远处满足特鲁丁格-莫泽意义上的临界指数增长。在 V 和 f 的一些适当假设下,基于变分法和一些新的技术分析,我们能够得到一些大 λ>0 正解的存在性,并研究了当λ→+∞ 时所得解的渐近行为。
Existence and concentration of positive solutions to generalized Chern-Simons-Schrödinger system with critical exponential growth
We are concerned with a class of generalized Chern-Simons-Schrödinger systems where denotes a sufficiently large parameter, admits a potential well and the nonlinearity f fulfills the critical exponential growth in the Trudinger-Moser sense at infinity. Under some suitable assumptions on V and f, based on variational method together with some new technical analysis, we are able to get the existence of positive solutions for some large , and the asymptotic behavior of the obtained solutions is also investigated when .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.