{"title":"用于赤道地区电离层建模的神经网络算法的速度和精度研究","authors":"","doi":"10.1016/j.jastp.2024.106365","DOIUrl":null,"url":null,"abstract":"<div><div>Neural networks are very efficient tools for modeling, including ionospheric modeling. The training algorithm is important for achieving the optimum performance of the trained network. This research is therefore meant to evaluate and compare the performances of ten neural network training algorithms based on their prediction accuracies, and the duration/times taken by each of the algorithms to establish the optimum result. The neural networks were trained using electron density measurements by Radio Occultation (RO) technique from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. Data for the period 2006 through 2021 was used. The networks were trained using about 2.9 million data points collected from the Kano region, Nigeria (5-degree rectangular region around geographic: 12.00° N, 8.59° E) after performing data quality control. The training algorithms considered in the work include: Bayesian Regularization (BR); Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFG); Conjugate Gradient with Powell/Beale (CGB); Fletcher-Reeves Conjugate Gradient (CGF); Gradient descent with momentum and adaptive learning rate (GDX); Levenberg Marquardt (LM); One Step Secant (OSS); Polak-Ribiére Conjugate Gradient (CGP); Resilient Backpropagation (RP); and Scaled Conjugate Gradient (SCG). The results showed that the BR and the LM algorithms gave the best performances in minimizing the errors of prediction (the mean RMSEs are respectively 112 and 114 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></math></span> electrons/cm<sup>3</sup>), but the RP algorithm, which came third in terms of accuracy, was significantly faster than both the LM and BR algorithms. The worst-performing algorithm in terms of accuracy was the GDX algorithm, although it was the fastest algorithm. The BFG algorithm was the worst-performing algorithm in terms of a combination of speed and accuracy. The developed neural network model was validated using ionosonde electron density measurements obtained from Ilorin, Nigeria (geographic: 8.5° N, 4.5° E; geomagnetic: 1.8° S). A comparison of the neural network, the NeQuick, and the IRI model predictions relative to the ionosonde measurements indicate that the neural network model was the best-performing model; the NN model predictions minimized the mean absolute errors (MAEs) in ∼44% of 399 ionosonde profiles investigated, the IRI model did so in ∼32%, and the NeQuick did so in ∼24%. The MAEs of the NeQuick however exhibited the best (least) variance. In overall, the NN model gave the least (best) mean of the MAEs (∼73 <span>×</span> 10<sup>3</sup> cm<sup>−3</sup>), compared to ∼82 × 10<sup>3</sup> cm<sup>−3</sup> given by both the NeQuick and the IRI models, further supporting the idea that neural networks are excellent for present-day ionospheric modeling.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speed and accuracy investigations of neural network algorithms for ionospheric modelling at an equatorial region\",\"authors\":\"\",\"doi\":\"10.1016/j.jastp.2024.106365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neural networks are very efficient tools for modeling, including ionospheric modeling. The training algorithm is important for achieving the optimum performance of the trained network. This research is therefore meant to evaluate and compare the performances of ten neural network training algorithms based on their prediction accuracies, and the duration/times taken by each of the algorithms to establish the optimum result. The neural networks were trained using electron density measurements by Radio Occultation (RO) technique from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. Data for the period 2006 through 2021 was used. The networks were trained using about 2.9 million data points collected from the Kano region, Nigeria (5-degree rectangular region around geographic: 12.00° N, 8.59° E) after performing data quality control. The training algorithms considered in the work include: Bayesian Regularization (BR); Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFG); Conjugate Gradient with Powell/Beale (CGB); Fletcher-Reeves Conjugate Gradient (CGF); Gradient descent with momentum and adaptive learning rate (GDX); Levenberg Marquardt (LM); One Step Secant (OSS); Polak-Ribiére Conjugate Gradient (CGP); Resilient Backpropagation (RP); and Scaled Conjugate Gradient (SCG). The results showed that the BR and the LM algorithms gave the best performances in minimizing the errors of prediction (the mean RMSEs are respectively 112 and 114 <span><math><mrow><mo>×</mo><msup><mn>10</mn><mn>3</mn></msup></mrow></math></span> electrons/cm<sup>3</sup>), but the RP algorithm, which came third in terms of accuracy, was significantly faster than both the LM and BR algorithms. The worst-performing algorithm in terms of accuracy was the GDX algorithm, although it was the fastest algorithm. The BFG algorithm was the worst-performing algorithm in terms of a combination of speed and accuracy. The developed neural network model was validated using ionosonde electron density measurements obtained from Ilorin, Nigeria (geographic: 8.5° N, 4.5° E; geomagnetic: 1.8° S). A comparison of the neural network, the NeQuick, and the IRI model predictions relative to the ionosonde measurements indicate that the neural network model was the best-performing model; the NN model predictions minimized the mean absolute errors (MAEs) in ∼44% of 399 ionosonde profiles investigated, the IRI model did so in ∼32%, and the NeQuick did so in ∼24%. The MAEs of the NeQuick however exhibited the best (least) variance. In overall, the NN model gave the least (best) mean of the MAEs (∼73 <span>×</span> 10<sup>3</sup> cm<sup>−3</sup>), compared to ∼82 × 10<sup>3</sup> cm<sup>−3</sup> given by both the NeQuick and the IRI models, further supporting the idea that neural networks are excellent for present-day ionospheric modeling.</div></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624001937\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001937","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Speed and accuracy investigations of neural network algorithms for ionospheric modelling at an equatorial region
Neural networks are very efficient tools for modeling, including ionospheric modeling. The training algorithm is important for achieving the optimum performance of the trained network. This research is therefore meant to evaluate and compare the performances of ten neural network training algorithms based on their prediction accuracies, and the duration/times taken by each of the algorithms to establish the optimum result. The neural networks were trained using electron density measurements by Radio Occultation (RO) technique from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. Data for the period 2006 through 2021 was used. The networks were trained using about 2.9 million data points collected from the Kano region, Nigeria (5-degree rectangular region around geographic: 12.00° N, 8.59° E) after performing data quality control. The training algorithms considered in the work include: Bayesian Regularization (BR); Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton (BFG); Conjugate Gradient with Powell/Beale (CGB); Fletcher-Reeves Conjugate Gradient (CGF); Gradient descent with momentum and adaptive learning rate (GDX); Levenberg Marquardt (LM); One Step Secant (OSS); Polak-Ribiére Conjugate Gradient (CGP); Resilient Backpropagation (RP); and Scaled Conjugate Gradient (SCG). The results showed that the BR and the LM algorithms gave the best performances in minimizing the errors of prediction (the mean RMSEs are respectively 112 and 114 electrons/cm3), but the RP algorithm, which came third in terms of accuracy, was significantly faster than both the LM and BR algorithms. The worst-performing algorithm in terms of accuracy was the GDX algorithm, although it was the fastest algorithm. The BFG algorithm was the worst-performing algorithm in terms of a combination of speed and accuracy. The developed neural network model was validated using ionosonde electron density measurements obtained from Ilorin, Nigeria (geographic: 8.5° N, 4.5° E; geomagnetic: 1.8° S). A comparison of the neural network, the NeQuick, and the IRI model predictions relative to the ionosonde measurements indicate that the neural network model was the best-performing model; the NN model predictions minimized the mean absolute errors (MAEs) in ∼44% of 399 ionosonde profiles investigated, the IRI model did so in ∼32%, and the NeQuick did so in ∼24%. The MAEs of the NeQuick however exhibited the best (least) variance. In overall, the NN model gave the least (best) mean of the MAEs (∼73 × 103 cm−3), compared to ∼82 × 103 cm−3 given by both the NeQuick and the IRI models, further supporting the idea that neural networks are excellent for present-day ionospheric modeling.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.