Andreas Wrife, Renan Guarese, Alessandro Iop, Mario Romero
{"title":"时空回放操作对虚拟现实脑室外引流训练的比较分析","authors":"Andreas Wrife, Renan Guarese, Alessandro Iop, Mario Romero","doi":"10.1016/j.cag.2024.104106","DOIUrl":null,"url":null,"abstract":"<div><div>Extensive research has been conducted in multiple surgical specialities where Virtual Reality (VR) has been utilised, such as spinal neurosurgery. However, cranial neurosurgery remains relatively unexplored in this regard. This work explores the impact of adopting VR to study External Ventricular Drainage (EVD). In this study, pre-recorded Motion Captured data of an EVD procedure is visualised on a VR headset, in comparison to a desktop monitor condition. Participants (<span><math><mrow><mi>N</mi><mo>=</mo><mn>20</mn></mrow></math></span>) were tasked with identifying and marking a key moment in the recordings. Objective and subjective metrics were recorded, such as completion time, temporal and spatial error distances, workload, and usability. The results from the experiment showed that the task was completed on average twice as fast in VR, when compared to desktop. However, desktop showed fewer error-prone results. Subjective feedback showed a slightly higher preference towards the VR environment concerning usability, while maintaining a comparable workload. Overall, VR displays are promising as an alternative tool to be used for educational and training purposes in cranial surgery.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104106"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of spatiotemporal playback manipulation on virtual reality training for External Ventricular Drainage\",\"authors\":\"Andreas Wrife, Renan Guarese, Alessandro Iop, Mario Romero\",\"doi\":\"10.1016/j.cag.2024.104106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extensive research has been conducted in multiple surgical specialities where Virtual Reality (VR) has been utilised, such as spinal neurosurgery. However, cranial neurosurgery remains relatively unexplored in this regard. This work explores the impact of adopting VR to study External Ventricular Drainage (EVD). In this study, pre-recorded Motion Captured data of an EVD procedure is visualised on a VR headset, in comparison to a desktop monitor condition. Participants (<span><math><mrow><mi>N</mi><mo>=</mo><mn>20</mn></mrow></math></span>) were tasked with identifying and marking a key moment in the recordings. Objective and subjective metrics were recorded, such as completion time, temporal and spatial error distances, workload, and usability. The results from the experiment showed that the task was completed on average twice as fast in VR, when compared to desktop. However, desktop showed fewer error-prone results. Subjective feedback showed a slightly higher preference towards the VR environment concerning usability, while maintaining a comparable workload. Overall, VR displays are promising as an alternative tool to be used for educational and training purposes in cranial surgery.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104106\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002413\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002413","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Comparative analysis of spatiotemporal playback manipulation on virtual reality training for External Ventricular Drainage
Extensive research has been conducted in multiple surgical specialities where Virtual Reality (VR) has been utilised, such as spinal neurosurgery. However, cranial neurosurgery remains relatively unexplored in this regard. This work explores the impact of adopting VR to study External Ventricular Drainage (EVD). In this study, pre-recorded Motion Captured data of an EVD procedure is visualised on a VR headset, in comparison to a desktop monitor condition. Participants () were tasked with identifying and marking a key moment in the recordings. Objective and subjective metrics were recorded, such as completion time, temporal and spatial error distances, workload, and usability. The results from the experiment showed that the task was completed on average twice as fast in VR, when compared to desktop. However, desktop showed fewer error-prone results. Subjective feedback showed a slightly higher preference towards the VR environment concerning usability, while maintaining a comparable workload. Overall, VR displays are promising as an alternative tool to be used for educational and training purposes in cranial surgery.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.