Manu Basavaraju , Erik Jan van Leeuwen , Reza Saei
{"title":"无 K4 和无 K5 图形中的最大诱导匹配","authors":"Manu Basavaraju , Erik Jan van Leeuwen , Reza Saei","doi":"10.1016/j.dam.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>584</mn><msup><mrow><mn>9</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings, and this bound is the best possible as any disjoint union of complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> forms an extremal graph. It is also known that the bound drops to <span><math><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>3</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>442</mn><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> when the graphs are restricted to the class of triangle-free (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-free) graphs. The extremal graphs, in this case, are known to be the disjoint unions of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>. Along the same line, we study the maximum number of maximal induced matchings when the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. We show that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><msup><mrow><mn>6</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>4</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>565</mn><msup><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings and the bound is the best possible obtained by any disjoint union of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. When the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs, the upper bound drops to <span><math><mrow><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>515</mn><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, and it is achieved by the disjoint union of copies of the wheel graph <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 407-418"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal induced matchings in K4-free and K5-free graphs\",\"authors\":\"Manu Basavaraju , Erik Jan van Leeuwen , Reza Saei\",\"doi\":\"10.1016/j.dam.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>584</mn><msup><mrow><mn>9</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings, and this bound is the best possible as any disjoint union of complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> forms an extremal graph. It is also known that the bound drops to <span><math><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>3</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>442</mn><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> when the graphs are restricted to the class of triangle-free (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-free) graphs. The extremal graphs, in this case, are known to be the disjoint unions of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>. Along the same line, we study the maximum number of maximal induced matchings when the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. We show that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><msup><mrow><mn>6</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>4</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>565</mn><msup><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings and the bound is the best possible obtained by any disjoint union of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. When the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs, the upper bound drops to <span><math><mrow><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>515</mn><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, and it is achieved by the disjoint union of copies of the wheel graph <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"359 \",\"pages\":\"Pages 407-418\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004177\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Maximal induced matchings in K4-free and K5-free graphs
An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every graph on vertices has at most maximal induced matchings, and this bound is the best possible as any disjoint union of complete graphs forms an extremal graph. It is also known that the bound drops to when the graphs are restricted to the class of triangle-free (-free) graphs. The extremal graphs, in this case, are known to be the disjoint unions of copies of . Along the same line, we study the maximum number of maximal induced matchings when the graphs are restricted to -free graphs and -free graphs. We show that every -free graph on vertices has at most maximal induced matchings and the bound is the best possible obtained by any disjoint union of copies of . When the graphs are restricted to -free graphs, the upper bound drops to , and it is achieved by the disjoint union of copies of the wheel graph .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.