无 K4 和无 K5 图形中的最大诱导匹配

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Manu Basavaraju , Erik Jan van Leeuwen , Reza Saei
{"title":"无 K4 和无 K5 图形中的最大诱导匹配","authors":"Manu Basavaraju ,&nbsp;Erik Jan van Leeuwen ,&nbsp;Reza Saei","doi":"10.1016/j.dam.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>584</mn><msup><mrow><mn>9</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings, and this bound is the best possible as any disjoint union of complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> forms an extremal graph. It is also known that the bound drops to <span><math><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>3</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>442</mn><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> when the graphs are restricted to the class of triangle-free (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-free) graphs. The extremal graphs, in this case, are known to be the disjoint unions of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>. Along the same line, we study the maximum number of maximal induced matchings when the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. We show that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><msup><mrow><mn>6</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>4</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>565</mn><msup><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings and the bound is the best possible obtained by any disjoint union of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. When the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs, the upper bound drops to <span><math><mrow><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>515</mn><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, and it is achieved by the disjoint union of copies of the wheel graph <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"359 ","pages":"Pages 407-418"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximal induced matchings in K4-free and K5-free graphs\",\"authors\":\"Manu Basavaraju ,&nbsp;Erik Jan van Leeuwen ,&nbsp;Reza Saei\",\"doi\":\"10.1016/j.dam.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>584</mn><msup><mrow><mn>9</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings, and this bound is the best possible as any disjoint union of complete graphs <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> forms an extremal graph. It is also known that the bound drops to <span><math><mrow><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>3</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>442</mn><msup><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> when the graphs are restricted to the class of triangle-free (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>-free) graphs. The extremal graphs, in this case, are known to be the disjoint unions of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span>. Along the same line, we study the maximum number of maximal induced matchings when the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graphs and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs. We show that every <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free graph on <span><math><mi>n</mi></math></span> vertices has at most <span><math><mrow><msup><mrow><mn>6</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>4</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>565</mn><msup><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> maximal induced matchings and the bound is the best possible obtained by any disjoint union of copies of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>. When the graphs are restricted to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs, the upper bound drops to <span><math><mrow><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi><mo>/</mo><mn>5</mn></mrow></msup><mo>≈</mo><mn>1</mn><mo>.</mo><mn>515</mn><msup><mrow><mn>8</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>, and it is achieved by the disjoint union of copies of the wheel graph <span><math><msub><mrow><mi>W</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"359 \",\"pages\":\"Pages 407-418\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004177\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图中的诱导匹配是指其端点诱导出一个 1 规则子图的边的集合。众所周知,n 个顶点上的每个图最多有 10n/5≈1.5849n 个最大诱导匹配,而且这个约束是可能的最佳约束,因为任何完整图的不相邻联盟 K5 都会形成一个极值图。我们还知道,当把图形限制在无三角形(无 K3)图类时,这个界限会降到 3n/3≈1.4423n 。在这种情况下,已知极值图是 K3,3 副本的不相交联合。沿着同一思路,我们研究了当图形仅限于无 K5 图形和无 K4 图形时的最大诱导匹配数。我们的研究表明,n 个顶点上的每个无 K5 图最多有 6n/4≈1.5651n 个最大诱导匹配,而且这个约束是任何 K4 副本的离散结合所能得到的最佳约束。当把图形限制为无 K4 图形时,上限降为 8n/5≈1.5158n,它是由轮状图 W5 的副本的不相邻结合实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximal induced matchings in K4-free and K5-free graphs
An induced matching in a graph is a set of edges whose endpoints induce a 1-regular subgraph. It is known that every graph on n vertices has at most 10n/51.5849n maximal induced matchings, and this bound is the best possible as any disjoint union of complete graphs K5 forms an extremal graph. It is also known that the bound drops to 3n/31.4423n when the graphs are restricted to the class of triangle-free (K3-free) graphs. The extremal graphs, in this case, are known to be the disjoint unions of copies of K3,3. Along the same line, we study the maximum number of maximal induced matchings when the graphs are restricted to K5-free graphs and K4-free graphs. We show that every K5-free graph on n vertices has at most 6n/41.5651n maximal induced matchings and the bound is the best possible obtained by any disjoint union of copies of K4. When the graphs are restricted to K4-free graphs, the upper bound drops to 8n/51.5158n, and it is achieved by the disjoint union of copies of the wheel graph W5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信