亚线性椭圆方程引发的闵科夫斯基问题

IF 2.4 2区 数学 Q1 MATHEMATICS
Qiuyi Dai, Xing Yi
{"title":"亚线性椭圆方程引发的闵科夫斯基问题","authors":"Qiuyi Dai,&nbsp;Xing Yi","doi":"10.1016/j.jde.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> be a bounded convex domain with boundary ∂Ω and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the unit outer vector normal to ∂Ω at <em>x</em>. Let <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> be the unit sphere in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Then, the Gauss mapping <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, defined almost everywhere with respect to surface measure <em>σ</em>, is given by <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. For <span><math><mn>0</mn><mo>&lt;</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn></math></span>, it is well known that the following problem of sub-linear elliptic equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>φ</mi><mo>=</mo><msup><mrow><mi>φ</mi></mrow><mrow><mi>β</mi></mrow></msup><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></math></span></span></span> has a unique solution. Moreover, it is easy to prove that each component of <span><math><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is well-defined almost everywhere on ∂Ω with respect to <em>σ</em>. Therefore, we can assign a measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> such that <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi><mo>)</mo></math></span>. That is<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></munder><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><mi>f</mi><mo>(</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi></math></span></span></span> for every <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>. The so-called Minkowski problem associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> asks to find bounded convex domain Ω so that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><mi>μ</mi></math></span> for a given Borel measure <em>μ</em> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Our main results of this paper are the weak continuity of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> with respect to Hausdorff metric and the unique solvability of Minkowski problem associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span>. As a byproduct of our setting, an isoperimetric inequality is obtained.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minkowski problems arise from sub-linear elliptic equations\",\"authors\":\"Qiuyi Dai,&nbsp;Xing Yi\",\"doi\":\"10.1016/j.jde.2024.09.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> be a bounded convex domain with boundary ∂Ω and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the unit outer vector normal to ∂Ω at <em>x</em>. Let <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> be the unit sphere in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. Then, the Gauss mapping <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>→</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>, defined almost everywhere with respect to surface measure <em>σ</em>, is given by <span><math><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. For <span><math><mn>0</mn><mo>&lt;</mo><mi>β</mi><mo>&lt;</mo><mn>1</mn></math></span>, it is well known that the following problem of sub-linear elliptic equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>Δ</mi><mi>φ</mi><mo>=</mo><msup><mrow><mi>φ</mi></mrow><mrow><mi>β</mi></mrow></msup><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>&gt;</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi></mtd></mtr><mtr><mtd><mi>φ</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></mtd></mtr></mtable></mrow></math></span></span></span> has a unique solution. Moreover, it is easy to prove that each component of <span><math><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is well-defined almost everywhere on ∂Ω with respect to <em>σ</em>. Therefore, we can assign a measure <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> such that <span><math><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi><mo>)</mo></math></span>. That is<span><span><span><math><munder><mo>∫</mo><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></munder><mi>f</mi><mo>(</mo><mi>ξ</mi><mo>)</mo><mi>d</mi><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mo>∂</mo><mi>Ω</mi></mrow></munder><mi>f</mi><mo>(</mo><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>σ</mi></math></span></span></span> for every <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>. The so-called Minkowski problem associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> asks to find bounded convex domain Ω so that <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub><mo>=</mo><mi>μ</mi></math></span> for a given Borel measure <em>μ</em> on <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Our main results of this paper are the weak continuity of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> with respect to Hausdorff metric and the unique solvability of Minkowski problem associated with <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span>. As a byproduct of our setting, an isoperimetric inequality is obtained.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006089\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006089","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 ΩRN 是边界为 ∂Ω 的有界凸域,ν(x) 是 ∂Ω 在 x 处的单位外矢量法线。那么,高斯映射 g:∂Ω→SN-1 几乎处处定义为表面度量 σ,其值为 g(x)=ν(x)。对于 0<β<1,众所周知,下面的亚线性椭圆方程问题{-Δφ=βx∈ωφ>0x∈ωφ=0x∈∂ω有唯一解。此外,很容易证明∇φ(x) 的每个分量在 ∂Ω 上关于 σ 几乎无处不定义良好。因此,我们可以在 SN-1 上指定一个度量 μΩ,使得 dμΩ=g⁎(|∇φ|2dσ) 。即∫SN-1f(ξ)dμΩ(ξ)=∫∂Ωf(ν(x))|∇φ(x)|2dσ,适用于每一个 f∈C(SN-1) 。与μΩ相关的所谓闵科夫斯基(Minkowski)问题要求找到有界凸域Ω,以便对于 SN-1 上的给定伯勒度量μ,μΩ=μ。本文的主要结果是 μΩ 相对于 Hausdorff 度量的弱连续性以及与 μΩ 相关的 Minkowski 问题的唯一可解性。作为我们设定的副产品,我们得到了等周不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minkowski problems arise from sub-linear elliptic equations
Let ΩRN be a bounded convex domain with boundary ∂Ω and ν(x) be the unit outer vector normal to ∂Ω at x. Let SN1 be the unit sphere in RN. Then, the Gauss mapping g:ΩSN1, defined almost everywhere with respect to surface measure σ, is given by g(x)=ν(x). For 0<β<1, it is well known that the following problem of sub-linear elliptic equation{Δφ=φβxΩφ>0xΩφ=0xΩ has a unique solution. Moreover, it is easy to prove that each component of φ(x) is well-defined almost everywhere on ∂Ω with respect to σ. Therefore, we can assign a measure μΩ on SN1 such that dμΩ=g(|φ|2dσ). That isSN1f(ξ)dμΩ(ξ)=Ωf(ν(x))|φ(x)|2dσ for every fC(SN1). The so-called Minkowski problem associated with μΩ asks to find bounded convex domain Ω so that μΩ=μ for a given Borel measure μ on SN1. Our main results of this paper are the weak continuity of μΩ with respect to Hausdorff metric and the unique solvability of Minkowski problem associated with μΩ. As a byproduct of our setting, an isoperimetric inequality is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信