平面向量场中心的全局归一化

IF 2.4 2区 数学 Q1 MATHEMATICS
C. Grotta-Ragazzo , F.J.S. Nascimento
{"title":"平面向量场中心的全局归一化","authors":"C. Grotta-Ragazzo ,&nbsp;F.J.S. Nascimento","doi":"10.1016/j.jde.2024.09.053","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a non-degenerate global center can be transformed into a classical Newtonian equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mo>−</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div><div>Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the global analytic integrability of the equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo></math></span>, where <span><math><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>v</mi><mo>)</mo></math></span>, under some additional conditions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global normalizations for centers of planar vector fields\",\"authors\":\"C. Grotta-Ragazzo ,&nbsp;F.J.S. Nascimento\",\"doi\":\"10.1016/j.jde.2024.09.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a non-degenerate global center can be transformed into a classical Newtonian equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mo>−</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div><div>Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the global analytic integrability of the equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo></math></span>, where <span><math><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>v</mi><mo>)</mo></math></span>, under some additional conditions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006387\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006387","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对卡门-奇科内(Carmen Chicone)提出的一个问题,证明了具有非退化全局中心的解析矢量场可以转化为经典牛顿方程 x¨=-V′(x) 。我们还证明了方程 x¨=F(u,u˙) (其中 F(u,v)=F(u,-v) )在一些附加条件下的全局解析可积分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global normalizations for centers of planar vector fields
This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a non-degenerate global center can be transformed into a classical Newtonian equation x¨=V(x).
Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the global analytic integrability of the equation x¨=F(u,u˙), where F(u,v)=F(u,v), under some additional conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信