{"title":"平面向量场中心的全局归一化","authors":"C. Grotta-Ragazzo , F.J.S. Nascimento","doi":"10.1016/j.jde.2024.09.053","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a non-degenerate global center can be transformed into a classical Newtonian equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mo>−</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div><div>Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the global analytic integrability of the equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo></math></span>, where <span><math><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>v</mi><mo>)</mo></math></span>, under some additional conditions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global normalizations for centers of planar vector fields\",\"authors\":\"C. Grotta-Ragazzo , F.J.S. Nascimento\",\"doi\":\"10.1016/j.jde.2024.09.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a non-degenerate global center can be transformed into a classical Newtonian equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mo>−</mo><msup><mrow><mi>V</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>.</div><div>Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the global analytic integrability of the equation <span><math><mover><mrow><mi>x</mi></mrow><mrow><mo>¨</mo></mrow></mover><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mrow><mo>˙</mo></mrow></mover><mo>)</mo></math></span>, where <span><math><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>F</mi><mo>(</mo><mi>u</mi><mo>,</mo><mo>−</mo><mi>v</mi><mo>)</mo></math></span>, under some additional conditions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006387\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006387","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global normalizations for centers of planar vector fields
This paper addresses a question posed by Carmen Chicone and proves that an analytic vector field with a non-degenerate global center can be transformed into a classical Newtonian equation .
Additionally, we establish a global Poincaré normal form for planar centers. We also demonstrate the global analytic integrability of the equation , where , under some additional conditions.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics