多项式环和完备中的科拉茨图类似物

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"多项式环和完备中的科拉茨图类似物","authors":"","doi":"10.1016/j.disc.2024.114273","DOIUrl":null,"url":null,"abstract":"<div><div>We study an analogue of the Collatz map in the polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, where <em>R</em> is an arbitrary commutative ring. We prove that if <em>R</em> is of positive characteristic, then every polynomial in <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> is eventually periodic with respect to this map. This extends previous works of the authors and of Hicks, Mullen, Yucas and Zavislak, who studied the Collatz map on <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, respectively. We also consider the Collatz map on the ring of formal power series <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>x</mi><mo>]</mo><mo>]</mo></math></span> when <em>R</em> is finite: we characterize the eventually periodic series in this ring, and give formulas for the number of cycles induced by the Collatz map, of any given length. We provide similar formulas for the original Collatz map defined on the ring <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of 2-adic integers, extending previous results of Lagarias.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Collatz map analogue in polynomial rings and in completions\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study an analogue of the Collatz map in the polynomial ring <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, where <em>R</em> is an arbitrary commutative ring. We prove that if <em>R</em> is of positive characteristic, then every polynomial in <span><math><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> is eventually periodic with respect to this map. This extends previous works of the authors and of Hicks, Mullen, Yucas and Zavislak, who studied the Collatz map on <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>, respectively. We also consider the Collatz map on the ring of formal power series <span><math><mi>R</mi><mo>[</mo><mo>[</mo><mi>x</mi><mo>]</mo><mo>]</mo></math></span> when <em>R</em> is finite: we characterize the eventually periodic series in this ring, and give formulas for the number of cycles induced by the Collatz map, of any given length. We provide similar formulas for the original Collatz map defined on the ring <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of 2-adic integers, extending previous results of Lagarias.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004047\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004047","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了多项式环 R[x] 中的科拉茨映射,其中 R 是任意交换环。我们证明,如果 R 是正特征,那么 R[x] 中的每个多项式最终都是关于这个映射的周期性多项式。这扩展了作者以及希克斯、马伦、尤卡斯和扎维斯拉克之前的工作,他们分别研究了 Fp[x] 和 F2[x] 上的科拉茨映射。我们还考虑了当 R 有限时形式幂级数环 R[[x]] 上的科拉茨映射:我们描述了该环中最终周期数列的特征,并给出了任何给定长度的科拉茨映射诱导的循环数公式。我们为定义在二阶整数环 Z2 上的原始科拉茨映射提供了类似的公式,扩展了拉加里亚斯以前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Collatz map analogue in polynomial rings and in completions
We study an analogue of the Collatz map in the polynomial ring R[x], where R is an arbitrary commutative ring. We prove that if R is of positive characteristic, then every polynomial in R[x] is eventually periodic with respect to this map. This extends previous works of the authors and of Hicks, Mullen, Yucas and Zavislak, who studied the Collatz map on Fp[x] and F2[x], respectively. We also consider the Collatz map on the ring of formal power series R[[x]] when R is finite: we characterize the eventually periodic series in this ring, and give formulas for the number of cycles induced by the Collatz map, of any given length. We provide similar formulas for the original Collatz map defined on the ring Z2 of 2-adic integers, extending previous results of Lagarias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信