仙人掌图形和周期的帽子猜谜游戏

IF 0.7 3区 数学 Q2 MATHEMATICS
Jeremy Chizewer , I.M.J. McInnis , Mehrdad Sohrabi , Shriya Kaistha
{"title":"仙人掌图形和周期的帽子猜谜游戏","authors":"Jeremy Chizewer ,&nbsp;I.M.J. McInnis ,&nbsp;Mehrdad Sohrabi ,&nbsp;Shriya Kaistha","doi":"10.1016/j.disc.2024.114272","DOIUrl":null,"url":null,"abstract":"<div><div>We study the hat guessing game on graphs. In this game, a player is placed on each vertex <em>v</em> of a graph <em>G</em> and assigned a colored hat from <span><math><mi>h</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> possible colors. Each player makes a deterministic guess on their hat color based on the colors assigned to the players on neighboring vertices, and the players win if at least one player correctly guesses his assigned color. If there exists a strategy that ensures at least one player guesses correctly for every possible assignment of colors, the game defined by <span><math><mo>〈</mo><mi>G</mi><mo>,</mo><mi>h</mi><mo>〉</mo></math></span> is called winning. The hat guessing number of <em>G</em> is the largest integer <em>q</em> so that if <span><math><mi>h</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>q</mi></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>G</mi></math></span> then <span><math><mo>〈</mo><mi>G</mi><mo>,</mo><mi>h</mi><mo>〉</mo></math></span> is winning.</div><div>In this note, we determine whether <span><math><mo>〈</mo><mi>G</mi><mo>,</mo><mi>h</mi><mo>〉</mo></math></span> is winning for any <em>h</em> whenever <em>G</em> is a cycle, resolving a conjecture of Kokhas and Latyshev in the affirmative and extending it. We then use this result to determine the hat guessing number of every cactus graph, graphs in which every pair of cycles share at most one vertex.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114272"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The hat guessing game on cactus graphs and cycles\",\"authors\":\"Jeremy Chizewer ,&nbsp;I.M.J. McInnis ,&nbsp;Mehrdad Sohrabi ,&nbsp;Shriya Kaistha\",\"doi\":\"10.1016/j.disc.2024.114272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the hat guessing game on graphs. In this game, a player is placed on each vertex <em>v</em> of a graph <em>G</em> and assigned a colored hat from <span><math><mi>h</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> possible colors. Each player makes a deterministic guess on their hat color based on the colors assigned to the players on neighboring vertices, and the players win if at least one player correctly guesses his assigned color. If there exists a strategy that ensures at least one player guesses correctly for every possible assignment of colors, the game defined by <span><math><mo>〈</mo><mi>G</mi><mo>,</mo><mi>h</mi><mo>〉</mo></math></span> is called winning. The hat guessing number of <em>G</em> is the largest integer <em>q</em> so that if <span><math><mi>h</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>=</mo><mi>q</mi></math></span> for all <span><math><mi>v</mi><mo>∈</mo><mi>G</mi></math></span> then <span><math><mo>〈</mo><mi>G</mi><mo>,</mo><mi>h</mi><mo>〉</mo></math></span> is winning.</div><div>In this note, we determine whether <span><math><mo>〈</mo><mi>G</mi><mo>,</mo><mi>h</mi><mo>〉</mo></math></span> is winning for any <em>h</em> whenever <em>G</em> is a cycle, resolving a conjecture of Kokhas and Latyshev in the affirmative and extending it. We then use this result to determine the hat guessing number of every cactus graph, graphs in which every pair of cycles share at most one vertex.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 1\",\"pages\":\"Article 114272\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004035\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是图上的帽子猜谜游戏。在这个游戏中,一名玩家被安排在图 G 的每个顶点 v 上,并从 h(v) 种可能的颜色中分配一顶彩色帽子。每个玩家根据邻近顶点上玩家被分配的颜色,确定性地猜测自己帽子的颜色,如果至少有一个玩家猜对了自己被分配的颜色,则玩家获胜。如果存在一种策略能确保至少有一名玩家在每一种可能的颜色分配中都能猜对,那么〈G,h〉所定义的博弈就称为胜局。G 的猜帽数是最大整数 q,如果所有 v∈G 的 h(v)=q 则〈G,h〉获胜。在本说明中,我们将确定只要 G 是一个循环,〈G,h〉是否对任意 h 都获胜,从而解决科哈斯(Kokhas)和拉特谢夫(Latyshev)的一个猜想,并对其进行扩展。然后,我们利用这一结果确定了每个仙人掌图的帽子猜测数,在仙人掌图中,每对循环最多共享一个顶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hat guessing game on cactus graphs and cycles
We study the hat guessing game on graphs. In this game, a player is placed on each vertex v of a graph G and assigned a colored hat from h(v) possible colors. Each player makes a deterministic guess on their hat color based on the colors assigned to the players on neighboring vertices, and the players win if at least one player correctly guesses his assigned color. If there exists a strategy that ensures at least one player guesses correctly for every possible assignment of colors, the game defined by G,h is called winning. The hat guessing number of G is the largest integer q so that if h(v)=q for all vG then G,h is winning.
In this note, we determine whether G,h is winning for any h whenever G is a cycle, resolving a conjecture of Kokhas and Latyshev in the affirmative and extending it. We then use this result to determine the hat guessing number of every cactus graph, graphs in which every pair of cycles share at most one vertex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信