{"title":"采用混合配体策略对 MOF 材料进行结构修饰,以增强其对有机污染物的光催化降解和吸附能力:综述","authors":"Nuhaa Faaizatunnisa , Ratna Ediati , Enis Nadia MD Yusof , Arif Fadlan , Karelius Karelius , Ummu Kulsum , Muhammad Naufal Ariesta","doi":"10.1016/j.nanoso.2024.101366","DOIUrl":null,"url":null,"abstract":"<div><div>Pollution of water raises many concerns for the community because these substances are considered hazardous and can be detrimental to the environment. Waste such as dyes and pesticide residues are the most significant contributors to organic pollution. These hazardous and toxic materials must be properly removed from the environment to ensure and protect human health, safety, and the environment. Adsorption and photodegradation are two effective water purification techniques with high efficiency, economy, and ease of operation, promising environmental remediation through efficient energy use. Metal-organic frameworks (MOFs) that combine metal ions with organic ligands have diverse physical and chemical properties, making them excellent materials for removing toxic pollutants. MOFs possess unique structural properties and are utilized in the latest technological advancements for removing pesticides, heavy metal ions, pharmaceutical waste, and dyes. The functionalization, modification, defects, and deformations of adsorbents can improve the adsorption and photocatalytic performance of MOFs. Several essential factors related to MOF synthesis have been studied concerning structural properties, the basis of linker functionalization, the synthetic strategy of MIX-MOF assembly, mixed ligands, and framework defects, which can improve MOF performance in certain areas. Several topics will be discussed in this review, including MOFs, the strategy of using mixed ligands in MOF synthesis, and their application for treating environmental pollution.</div></div>","PeriodicalId":397,"journal":{"name":"Nano-Structures & Nano-Objects","volume":"40 ","pages":"Article 101366"},"PeriodicalIF":5.4500,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mixed-ligand strategy for structural modification of MOF materials to enhance the photocatalytic degradation and adsorption of organic pollutants: A review\",\"authors\":\"Nuhaa Faaizatunnisa , Ratna Ediati , Enis Nadia MD Yusof , Arif Fadlan , Karelius Karelius , Ummu Kulsum , Muhammad Naufal Ariesta\",\"doi\":\"10.1016/j.nanoso.2024.101366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pollution of water raises many concerns for the community because these substances are considered hazardous and can be detrimental to the environment. Waste such as dyes and pesticide residues are the most significant contributors to organic pollution. These hazardous and toxic materials must be properly removed from the environment to ensure and protect human health, safety, and the environment. Adsorption and photodegradation are two effective water purification techniques with high efficiency, economy, and ease of operation, promising environmental remediation through efficient energy use. Metal-organic frameworks (MOFs) that combine metal ions with organic ligands have diverse physical and chemical properties, making them excellent materials for removing toxic pollutants. MOFs possess unique structural properties and are utilized in the latest technological advancements for removing pesticides, heavy metal ions, pharmaceutical waste, and dyes. The functionalization, modification, defects, and deformations of adsorbents can improve the adsorption and photocatalytic performance of MOFs. Several essential factors related to MOF synthesis have been studied concerning structural properties, the basis of linker functionalization, the synthetic strategy of MIX-MOF assembly, mixed ligands, and framework defects, which can improve MOF performance in certain areas. Several topics will be discussed in this review, including MOFs, the strategy of using mixed ligands in MOF synthesis, and their application for treating environmental pollution.</div></div>\",\"PeriodicalId\":397,\"journal\":{\"name\":\"Nano-Structures & Nano-Objects\",\"volume\":\"40 \",\"pages\":\"Article 101366\"},\"PeriodicalIF\":5.4500,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Structures & Nano-Objects\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352507X24002786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Structures & Nano-Objects","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352507X24002786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The mixed-ligand strategy for structural modification of MOF materials to enhance the photocatalytic degradation and adsorption of organic pollutants: A review
Pollution of water raises many concerns for the community because these substances are considered hazardous and can be detrimental to the environment. Waste such as dyes and pesticide residues are the most significant contributors to organic pollution. These hazardous and toxic materials must be properly removed from the environment to ensure and protect human health, safety, and the environment. Adsorption and photodegradation are two effective water purification techniques with high efficiency, economy, and ease of operation, promising environmental remediation through efficient energy use. Metal-organic frameworks (MOFs) that combine metal ions with organic ligands have diverse physical and chemical properties, making them excellent materials for removing toxic pollutants. MOFs possess unique structural properties and are utilized in the latest technological advancements for removing pesticides, heavy metal ions, pharmaceutical waste, and dyes. The functionalization, modification, defects, and deformations of adsorbents can improve the adsorption and photocatalytic performance of MOFs. Several essential factors related to MOF synthesis have been studied concerning structural properties, the basis of linker functionalization, the synthetic strategy of MIX-MOF assembly, mixed ligands, and framework defects, which can improve MOF performance in certain areas. Several topics will be discussed in this review, including MOFs, the strategy of using mixed ligands in MOF synthesis, and their application for treating environmental pollution.
期刊介绍:
Nano-Structures & Nano-Objects is a new journal devoted to all aspects of the synthesis and the properties of this new flourishing domain. The journal is devoted to novel architectures at the nano-level with an emphasis on new synthesis and characterization methods. The journal is focused on the objects rather than on their applications. However, the research for new applications of original nano-structures & nano-objects in various fields such as nano-electronics, energy conversion, catalysis, drug delivery and nano-medicine is also welcome. The scope of Nano-Structures & Nano-Objects involves: -Metal and alloy nanoparticles with complex nanostructures such as shape control, core-shell and dumbells -Oxide nanoparticles and nanostructures, with complex oxide/metal, oxide/surface and oxide /organic interfaces -Inorganic semi-conducting nanoparticles (quantum dots) with an emphasis on new phases, structures, shapes and complexity -Nanostructures involving molecular inorganic species such as nanoparticles of coordination compounds, molecular magnets, spin transition nanoparticles etc. or organic nano-objects, in particular for molecular electronics -Nanostructured materials such as nano-MOFs and nano-zeolites -Hetero-junctions between molecules and nano-objects, between different nano-objects & nanostructures or between nano-objects & nanostructures and surfaces -Methods of characterization specific of the nano size or adapted for the nano size such as X-ray and neutron scattering, light scattering, NMR, Raman, Plasmonics, near field microscopies, various TEM and SEM techniques, magnetic studies, etc .