利用 Goos-Hänchen 角位移全内反射测量浑浊介质

IF 4.4 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Miao , ChenJun Dong , Yufeng Ma , Chenghao Jia , Zeng Wang , Haibin Liu
{"title":"利用 Goos-Hänchen 角位移全内反射测量浑浊介质","authors":"Yang Miao ,&nbsp;ChenJun Dong ,&nbsp;Yufeng Ma ,&nbsp;Chenghao Jia ,&nbsp;Zeng Wang ,&nbsp;Haibin Liu","doi":"10.1016/j.rinp.2024.107997","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the Goos-Hänchen effect and the intensity attenuation of the evanescent wave penetrating and traveling, a new theoretical model of total internal reflection from the interface of turbid media is proposed and an analytical reflectance expression in a wide incident angle range is developed. The Goos-Hänchen angle displacement between the critical reflectance and the saturated reflectance is discovered. A sensor, for measuring the complex refractive index of turbid media in real-time, with divergent light source is designed. The captured images show that the light distribution reflected from the transparent medium has a sharp boundary, but for turbid media, the reflected light intensity attenuates during the transition from total to non-total internal reflection regions. It is successful and accurate that the new model fits the experimental data of the reflectance and the complex refractive index of turbid media is measured by our sensor. The results show that measuring has advantages in real-time, in situ, and with high accuracy.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"66 ","pages":"Article 107997"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of turbid media by total internal reflection with Goos-Hänchen angle displacement\",\"authors\":\"Yang Miao ,&nbsp;ChenJun Dong ,&nbsp;Yufeng Ma ,&nbsp;Chenghao Jia ,&nbsp;Zeng Wang ,&nbsp;Haibin Liu\",\"doi\":\"10.1016/j.rinp.2024.107997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the Goos-Hänchen effect and the intensity attenuation of the evanescent wave penetrating and traveling, a new theoretical model of total internal reflection from the interface of turbid media is proposed and an analytical reflectance expression in a wide incident angle range is developed. The Goos-Hänchen angle displacement between the critical reflectance and the saturated reflectance is discovered. A sensor, for measuring the complex refractive index of turbid media in real-time, with divergent light source is designed. The captured images show that the light distribution reflected from the transparent medium has a sharp boundary, but for turbid media, the reflected light intensity attenuates during the transition from total to non-total internal reflection regions. It is successful and accurate that the new model fits the experimental data of the reflectance and the complex refractive index of turbid media is measured by our sensor. The results show that measuring has advantages in real-time, in situ, and with high accuracy.</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"66 \",\"pages\":\"Article 107997\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221137972400682X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221137972400682X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于 Goos-Hänchen 效应和蒸发波穿透和传播的强度衰减,提出了浊介质界面全内反射的新理论模型,并建立了宽入射角范围内的反射率解析表达式。发现了临界反射率和饱和反射率之间的 Goos-Hänchen 角位移。还设计了一种采用发散光源实时测量浑浊介质复折射率的传感器。捕捉到的图像显示,透明介质反射的光分布有一个清晰的边界,但对于浑浊介质,在从全内反射区到非全内反射区的过渡过程中,反射光强度会减弱。新模型成功且准确地拟合了反射率的实验数据,我们的传感器还测量了浑浊介质的复折射率。结果表明,测量具有实时、原位和高精度的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of turbid media by total internal reflection with Goos-Hänchen angle displacement
Based on the Goos-Hänchen effect and the intensity attenuation of the evanescent wave penetrating and traveling, a new theoretical model of total internal reflection from the interface of turbid media is proposed and an analytical reflectance expression in a wide incident angle range is developed. The Goos-Hänchen angle displacement between the critical reflectance and the saturated reflectance is discovered. A sensor, for measuring the complex refractive index of turbid media in real-time, with divergent light source is designed. The captured images show that the light distribution reflected from the transparent medium has a sharp boundary, but for turbid media, the reflected light intensity attenuates during the transition from total to non-total internal reflection regions. It is successful and accurate that the new model fits the experimental data of the reflectance and the complex refractive index of turbid media is measured by our sensor. The results show that measuring has advantages in real-time, in situ, and with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信