中红外甲烷光声光谱中的动力学冷却:通过数字孪生验证进行定量分析

IF 7.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Thomas Rück , Jonas Pangerl , Lukas Escher , Simon Jobst , Max Müller , Rudolf Bierl , Frank-Michael Matysik
{"title":"中红外甲烷光声光谱中的动力学冷却:通过数字孪生验证进行定量分析","authors":"Thomas Rück ,&nbsp;Jonas Pangerl ,&nbsp;Lukas Escher ,&nbsp;Simon Jobst ,&nbsp;Max Müller ,&nbsp;Rudolf Bierl ,&nbsp;Frank-Michael Matysik","doi":"10.1016/j.pacs.2024.100652","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a detailed quantitative analysis of kinetic cooling in methane photoacoustic spectroscopy, leveraging the capabilities of a digital twin model. Using a quantum cascade laser tuned to 1210.01 cm⁻¹, we investigated the effects of varying nitrogen-oxygen matrix compositions on the photoacoustic signals of 15 ppmV methane. Notably, the photoacoustic signal amplitude decreased with increasing oxygen concentration, even falling below the background signal at oxygen levels higher than approximately 6 %V. This phenomenon was attributed to kinetic cooling, where thermal energy is extracted from the surrounding gas molecules rather than added, as validated by complex vector analysis using a previously published digital twin model. The model accurately reproduced complex signal patterns through simulations, providing insights into the underlying molecular mechanisms by quantifying individual collision contributions. These findings underscore the importance of digital twins in understanding the fundamentals of photoacoustic signal generation at the molecular level.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"40 ","pages":"Article 100652"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic cooling in mid-infrared methane photoacoustic spectroscopy: A quantitative analysis via digital twin verification\",\"authors\":\"Thomas Rück ,&nbsp;Jonas Pangerl ,&nbsp;Lukas Escher ,&nbsp;Simon Jobst ,&nbsp;Max Müller ,&nbsp;Rudolf Bierl ,&nbsp;Frank-Michael Matysik\",\"doi\":\"10.1016/j.pacs.2024.100652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a detailed quantitative analysis of kinetic cooling in methane photoacoustic spectroscopy, leveraging the capabilities of a digital twin model. Using a quantum cascade laser tuned to 1210.01 cm⁻¹, we investigated the effects of varying nitrogen-oxygen matrix compositions on the photoacoustic signals of 15 ppmV methane. Notably, the photoacoustic signal amplitude decreased with increasing oxygen concentration, even falling below the background signal at oxygen levels higher than approximately 6 %V. This phenomenon was attributed to kinetic cooling, where thermal energy is extracted from the surrounding gas molecules rather than added, as validated by complex vector analysis using a previously published digital twin model. The model accurately reproduced complex signal patterns through simulations, providing insights into the underlying molecular mechanisms by quantifying individual collision contributions. These findings underscore the importance of digital twins in understanding the fundamentals of photoacoustic signal generation at the molecular level.</div></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"40 \",\"pages\":\"Article 100652\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597924000697\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597924000697","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用数字孪生模型的功能,对甲烷光声光谱中的动力学冷却进行了详细的定量分析。我们使用调谐到 1210.01 cm-¹ 的量子级联激光器,研究了不同氮氧基质成分对 15 ppmV 甲烷光声信号的影响。值得注意的是,光声信号振幅随着氧气浓度的增加而减小,甚至在氧气含量高于约 6 %V 时低于背景信号。这一现象归因于动能冷却,即从周围气体分子中提取热能,而不是增加热能,这一点通过使用之前发布的数字孪生模型进行复杂矢量分析得到了验证。该模型通过模拟准确地再现了复杂的信号模式,通过量化单个碰撞贡献,深入了解了潜在的分子机制。这些发现强调了数字孪生模型在理解分子水平光声信号产生的基本原理方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetic cooling in mid-infrared methane photoacoustic spectroscopy: A quantitative analysis via digital twin verification
This study presents a detailed quantitative analysis of kinetic cooling in methane photoacoustic spectroscopy, leveraging the capabilities of a digital twin model. Using a quantum cascade laser tuned to 1210.01 cm⁻¹, we investigated the effects of varying nitrogen-oxygen matrix compositions on the photoacoustic signals of 15 ppmV methane. Notably, the photoacoustic signal amplitude decreased with increasing oxygen concentration, even falling below the background signal at oxygen levels higher than approximately 6 %V. This phenomenon was attributed to kinetic cooling, where thermal energy is extracted from the surrounding gas molecules rather than added, as validated by complex vector analysis using a previously published digital twin model. The model accurately reproduced complex signal patterns through simulations, providing insights into the underlying molecular mechanisms by quantifying individual collision contributions. These findings underscore the importance of digital twins in understanding the fundamentals of photoacoustic signal generation at the molecular level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photoacoustics
Photoacoustics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍: The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms. Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring. Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed. These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信