Kaiyu Cao , Lin Chen , Yongxiu Lu , Yao Zhang , Mengjing Li , Duo Wu , Yilong Wang , Liang Chen , Xiaonan Zhang , Rui Yang , Youliang Huang , Aifeng Zhou
{"title":"末次冰期以来中国西南部杞麓湖生态与环境变化的自然和人为因素","authors":"Kaiyu Cao , Lin Chen , Yongxiu Lu , Yao Zhang , Mengjing Li , Duo Wu , Yilong Wang , Liang Chen , Xiaonan Zhang , Rui Yang , Youliang Huang , Aifeng Zhou","doi":"10.1016/j.palaeo.2024.112514","DOIUrl":null,"url":null,"abstract":"<div><div>The ecological evolution of lakes and their watersheds and the driving mechanisms are a key topic in paleoenvironmental research. However, the relative impacts of human activities and climate change on lake ecosystems since the last deglaciation remain unclear. We conducted a high-resolution study of the chain length distribution and concentration of <em>n</em>-alkanes in a sediment core from Lake Qilu in SW China, to reveal the ecological changes and their controlling factors since 14.6 cal kyr BP. Based on studies of modern samples, short-chain, medium-chain, and long-chain <em>n</em>-alkanes are associated with bacteria/algae, aquatic plants, and terrestrial plants, respectively. Combining the ACL<sub>17–33</sub>, Paq, and Σ<em>n</em>-alkane indices, we found that both aquatic and terrestrial plants proliferated at Lake Qilu from 14.6 to 6 cal kyr BP, which was associated with a relatively warm and wet climate and dynamic strong winds. During the interval from 6 to 2 cal kyr BP, aquatic plants flourished, accompanied by a rapid surge in the regional productivity, primarily due to human activities. After 2 cal kyr BP, anthropogenic eutrophication was the primary cause of the increase in bacteria and algae populations. These results suggest that, before 6 cal kyr BP, climatic factors dominated the <em>n</em>-alkanes distribution; whereas after 6 cal kyr BP, human activities became the primary factor controlling the <em>n</em>-alkanes and ecological changes in Lake Qilu.</div></div>","PeriodicalId":19928,"journal":{"name":"Palaeogeography, Palaeoclimatology, Palaeoecology","volume":"655 ","pages":"Article 112514"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural and anthropogenic forcing of ecological and environmental changes at Lake Qilu, SW China, since the last deglaciation\",\"authors\":\"Kaiyu Cao , Lin Chen , Yongxiu Lu , Yao Zhang , Mengjing Li , Duo Wu , Yilong Wang , Liang Chen , Xiaonan Zhang , Rui Yang , Youliang Huang , Aifeng Zhou\",\"doi\":\"10.1016/j.palaeo.2024.112514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ecological evolution of lakes and their watersheds and the driving mechanisms are a key topic in paleoenvironmental research. However, the relative impacts of human activities and climate change on lake ecosystems since the last deglaciation remain unclear. We conducted a high-resolution study of the chain length distribution and concentration of <em>n</em>-alkanes in a sediment core from Lake Qilu in SW China, to reveal the ecological changes and their controlling factors since 14.6 cal kyr BP. Based on studies of modern samples, short-chain, medium-chain, and long-chain <em>n</em>-alkanes are associated with bacteria/algae, aquatic plants, and terrestrial plants, respectively. Combining the ACL<sub>17–33</sub>, Paq, and Σ<em>n</em>-alkane indices, we found that both aquatic and terrestrial plants proliferated at Lake Qilu from 14.6 to 6 cal kyr BP, which was associated with a relatively warm and wet climate and dynamic strong winds. During the interval from 6 to 2 cal kyr BP, aquatic plants flourished, accompanied by a rapid surge in the regional productivity, primarily due to human activities. After 2 cal kyr BP, anthropogenic eutrophication was the primary cause of the increase in bacteria and algae populations. These results suggest that, before 6 cal kyr BP, climatic factors dominated the <em>n</em>-alkanes distribution; whereas after 6 cal kyr BP, human activities became the primary factor controlling the <em>n</em>-alkanes and ecological changes in Lake Qilu.</div></div>\",\"PeriodicalId\":19928,\"journal\":{\"name\":\"Palaeogeography, Palaeoclimatology, Palaeoecology\",\"volume\":\"655 \",\"pages\":\"Article 112514\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Palaeogeography, Palaeoclimatology, Palaeoecology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031018224005030\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palaeogeography, Palaeoclimatology, Palaeoecology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031018224005030","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
湖泊及其流域的生态演变及其驱动机制是古环境研究的一个重要课题。然而,自上一次冰期以来,人类活动和气候变化对湖泊生态系统的相对影响仍不清楚。我们对中国西南部齐鲁湖沉积物岩芯中的正构烷烃链长分布和浓度进行了高分辨率研究,以揭示自 14.6 cal kyr BP 以来的生态变化及其控制因素。根据对现代样本的研究,短链、中链和长链正构烷烃分别与细菌/藻类、水生植物和陆生植物有关。结合ACL17-33、Paq和Σn-烷烃指数,我们发现在14.6-6 cal kyr BP期间,齐鲁湖的水生植物和陆生植物都大量繁殖,这与相对温暖湿润的气候和动态强风有关。在公元前 6 千年至公元前 2 千年期间,水生植物蓬勃发展,伴随着区域生产力的迅速飙升,这主要是由于人类活动造成的。公元前 2 千年后,人为富营养化是细菌和藻类数量增加的主要原因。这些结果表明,在公元前 6 千年之前,气候因素主导着正构烷烃的分布;而在公元前 6 千年之后,人类活动成为控制齐鲁湖正构烷烃和生态变化的主要因素。
Natural and anthropogenic forcing of ecological and environmental changes at Lake Qilu, SW China, since the last deglaciation
The ecological evolution of lakes and their watersheds and the driving mechanisms are a key topic in paleoenvironmental research. However, the relative impacts of human activities and climate change on lake ecosystems since the last deglaciation remain unclear. We conducted a high-resolution study of the chain length distribution and concentration of n-alkanes in a sediment core from Lake Qilu in SW China, to reveal the ecological changes and their controlling factors since 14.6 cal kyr BP. Based on studies of modern samples, short-chain, medium-chain, and long-chain n-alkanes are associated with bacteria/algae, aquatic plants, and terrestrial plants, respectively. Combining the ACL17–33, Paq, and Σn-alkane indices, we found that both aquatic and terrestrial plants proliferated at Lake Qilu from 14.6 to 6 cal kyr BP, which was associated with a relatively warm and wet climate and dynamic strong winds. During the interval from 6 to 2 cal kyr BP, aquatic plants flourished, accompanied by a rapid surge in the regional productivity, primarily due to human activities. After 2 cal kyr BP, anthropogenic eutrophication was the primary cause of the increase in bacteria and algae populations. These results suggest that, before 6 cal kyr BP, climatic factors dominated the n-alkanes distribution; whereas after 6 cal kyr BP, human activities became the primary factor controlling the n-alkanes and ecological changes in Lake Qilu.
期刊介绍:
Palaeogeography, Palaeoclimatology, Palaeoecology is an international medium for the publication of high quality and multidisciplinary, original studies and comprehensive reviews in the field of palaeo-environmental geology. The journal aims at bringing together data with global implications from research in the many different disciplines involved in palaeo-environmental investigations.
By cutting across the boundaries of established sciences, it provides an interdisciplinary forum where issues of general interest can be discussed.